Biochemistry 324 Bioinformatics

Multiple Sequence Alignment (MSA)

Big- Oh notation

Greek omicron symbol "O"
The "Big-Oh" notation indicates the complexity of an algorithm in terms of execution speed and storage needs

1. Algorithm to calculate a^{b}
```
exp1(a,b):
ans=1
    while(b>0): O(b) linear
    ans *= a
    b -= 1
return ans
```

2. Algorithm to calculate $n^{*} m$
```
exp2(n,m):
O(n*m)\congO(n2})\mathrm{ quadratic
x=0
    for i in range (n):
    for j in range (m):
    x += 1
return x
```

```
n=1000, nanosecond per n
```

n=1000, nanosecond per n
log
log
10 nanoseconds
10 nanoseconds
linear 1 microsecond
linear 1 microsecond
quadratic 1 millisecond
quadratic 1 millisecond
exponential 10 284 years!

```
exponential 10 284 years!
```


Approaches to multiple alignments

- The Needleman-Wunsch or Smith-Waterman pairwise sequence alignments based on dynamic programming is exact and guarantees an optimal alignment
- The "needle" or "water" algorithms are $\mathbf{O}(\mathbf{m n})$ and $\mathbf{O}\left(\mathbf{m}^{2} \mathrm{n}\right)$, where m and n are the lengths of the 2 sequences (quadratic)
- A multiple alignment approach based on the "needle" or "water" algorithm will take $\mathbf{O}\left(\mathbf{2}^{\mathrm{N}} \mathrm{L}^{\mathrm{N}}\right)$, where N is the number of sequences, L is the average sequence length (exponential)
- Thus, dynamic programming approaches to multiple alignments are not computationally feasible
- Five algorithmic approaches to multiple alignments:
- Exact: "needle", "water"
- Progressive: clustalW $O\left(N^{2}\right)$
- Iterative: Praline, MUSCLE $O\left(N^{2} L+N L^{2}\right)$
- Consistency-based: MAFFT $O(N \log N), T-c o f f e e ~ O\left(N^{3} L\right)$
- Structure based: Expresso $O\left(N^{3} \mathrm{~L}\right)$

ClustalW (old)

- Based on pairwise alignment of all combinations, constructing a guide tree, and then assembling the multiple alignment based on best to worst alignment scores
- http://www.genome.jp/tools-bin/clustalw

1. beta-globin_human
2. myoglobin_human
3. neuroglobin_human
4. globin_soybean
5. globin_rice
Sequences (1:2) Aligned. Score: 23.1293
Sequences (1:3) Aligned. Score: 16.3265
Sequences (1:4) Aligned. Score: 11.4504
Sequences (1:5) Aligned. Score: 12.6761
Sequences (2:3) Aligned. Score: 15.894
Sequences (2:4) Aligned. Score: 11.4504
Sequences (2:5) Aligned. Score: 11.2676
Sequences (3:4) Aligned. Score: 12.9771
Sequences (3:5) Aligned. Score: 14.7887
Sequences (4:5) Aligned. Score: 38.1679

((beta-globin_human:0.38151,myoglobin_human:0.38720):0.04595,_neuroglobin_human:0.40859,(globin_soybean:0.31392,globin_rice:0.30440):0.14342);
globin_soybean globin_rice neuroglobin_human beta-globin_human myoglobin_human
globin_soybean globin_rice neuroglobin_human beta-globin_human myoglobin_human
globin_soybean globin_rice neuroglobin_human beta-globin_human myoglobin_human
-----------MTTSDVTTSMFERIGGST--TIDALVDRFYDRMDTLPEAQMIRAMHAD MKWLKKMMAKPSAERDPQQSNAYDRIGGEE--VIRALAKQFYHQMQTNPDTQALLAMHRS ------ MERPEPELIRQSWRAVSRSPLEH--GTVLFARLFALEPDLLPLFQYNCRQFSS -------MVHLTPEEKSAVTALWGKVNVDE--VGGEALGRLLVVYPWTQRFFESFGDLST
--------MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKS

D---------LGLIRDVLKRYLTEWTGGPKLYTPEKGHPRLRQRHIGFAIGDAERDAWLL P--------IPESEQKLFEFLSGWLGGPQLFHQRHGHPALRARHMPFSIDETMRDQWLL PEDCLSSPEFLDHIRKVMLVIDAAVTNVEDLSSLEEYLASLGRKHRAVGVKLSSFSTVGE PDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCD--KLHVDPENFRLLGN EDEMKASEDLKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEF--ISE

CMRGAMEETVT---DSAARQDLDRAISGLADWMRNRS-------
CMQRALAIEIK-- EPQHREAIYQAISTLADHMRNQ-
SLLYMLEKCLGPAFTPATRAAWSQLYGAVVQAMSRGWDGE----
VLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH-----
CIIQVLQSKHPGDFGADAQGAMNKALELFRKDMASNYKELGFQG

Multiple sequence comparison by log-expectation (MUSCLE)

- The "distance" based on number of common k-tuples shared between sequences are calculated
- A binary tree is constructed
- Profiles calculated for child alignments at each node, working from outside to root, giving MSA1 at root
- MSA1 is estimate based of k-tuple similarities
- Kimura distance is calculated from MSA1 and a new binary tree constructed
- Changed branches are re-aligned to produce MSA2
- Starting from the most distant nodes, working towards root, profiles are aligned
- If new profile score is improved, it is retained
- Continue until convergence or reaching set limit

http://www.ebi.ac.uk/Tools/msa/muscle/

Kimura model:
$d_{A B}=-\ln \left(1-f_{A B}-0.2 \times f_{A B}{ }^{2}\right)$
where $f_{A B}=$ dissimilarity (fraction of observed differences) between sequences A and B,
$d_{A B}=$ estimated evolutionary distance (fraction of expected substitutions) between sequences A and B

Tree-based Consistency Objective Function for alignment Evaluation (T-Coffee)

1. Library construction
```
Seq A: GARFIELD THE LAST FAT CAT
Seq B: GARFIELD THE FAST CAT
Seq C: GARFIELD THE VERY FAST CAT
Seq D: THE FAT CAT
```

- Two libraries of all global (clustalW) and local (Lalign) pairwise alignments are constructed for all possible sequence pairs (A-B, A-C, A-D, B-C, etc)
- Individual symbol pairing in each alignment is given a weight according to the percentage similarity of the aligned sequences
- The two libraries are merged by adding weights of duplicate entries

```
SeqA GARFIELD THE LAST FAT CAT Prim. Weight = 88
SegA GARFIELD THE LAST FA-T CAT Prim. Weight = 77
SegA GARFIELD THE LAST FAT CAT Prim. Weight =100
```

$\begin{aligned} & \text { SegB } \\ & \text { Segc } \end{aligned}$	GARFIELD GARFIELD	$\begin{aligned} & \text { THE } \\ & \text { THE } \end{aligned}$	VERY	$\begin{aligned} & \text { FAST } \\ & \text { FAST } \end{aligned}$	$\begin{aligned} & \text { CAT } \\ & \text { CAT } \end{aligned}$	Prim Weight $=100$
SegB	GARFIELD	THE	FAST	CAT		Prim. Weight $=100$
SeqD		THE	FA-T	CAT		Prim. Weight $=100$
SegC	GARFIELD	THE	VERY	FAST	CAT	Prim. Weight $=100$

T-Coffee

2. Library extension

- Aligned triple sequences are considered ($A-B, A-C, B-C$)
- The weight of individual symbol pairings that are present in all alignments are summed
- We now perform a dynamic programming alignment of all possible sequence pairs using the extended library as a scoring matrix
- A binary tree if calculated based on the scores of the alignments
- Using the tree as guide, alignments are calculated from the most similar pairs down to the root of the tree
- No gap penalties or extension introduced during MA since these are already accommodated in weight library
http://www.ebi.ac.uk/Tools/msa/tcoffee/

Multiple alignment by Fast Fourier Transform (MAFFT)

- The volume and charge properties of each amino acid is represented in a vector profile
- The correlation between each position of the profile is calculated
- A Fast Fourier analysis is performed on the correlation to determine the offset (how many residues sequence 1 has been slid past sequence 2) between homologous regions
- A Fourier analysis identifies the dominant frequencies present in a signal composed of the combination of many frequencies
- This analysis is $\mathrm{O}\left(\mathrm{N} \log \mathrm{N}\right.$) as opposed to $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- A homology search is performed between the two sequences in a sliding window at the determined offset

A

MAFFT

- The positions of homology defines a constrained path through a homology matrix
- The best alignment path to connect the identified homologous regions is then calculated in this series of smaller, adjacent windows
- MAFFT is very useful to do MA of large numbers $(>10,000)$ of sequences

B
sequence 1

Expresso

- A BLAST search of the PDB protein structure database with query sequence is performed
- A hit with $>60 \%$ sequence identity and $>70 \%$ coverage is selected
- The coordinates of the structures are aligned with SAP, without a need to superimpose them
- SAP identifies structurally equivalent α-carbons in sequences A and B based on the similarities of the distance between the α-carbon in structure A and all other α-carbons in A, compared to the distance between an α-carbon in structure B and all other α-carbons in B
- SAP produces a structural alignment
- The sequence \mathbf{A} and \mathbf{B} are then aligned to the paired structural alignments, and the alignment added to the library
"The term Expresso also conveys the notion of aroma extraction and concentration, a notion that resonates with the way structures are 'expressed' within the MSA" -- developers

- The library is then used to produce the MSA using a progressive alignment as implemented in the T-coffee algorithm

