
Introduction to Linux and the HPC

by Hugh Patterton
(hpatterton@sun.ac.za)

Center for Bioinformatics and Computational Biology
Stellenbosch University
South Africa

sun.ac.za/sci-bioinformatics

https://www.sun.ac.za/sci-bioinformatics

Typical standard PC architecture

• One processor (CPU with multiple cores)
• Storage: hard drive(s), SSD(s)
• Network: Ethernet card
• Graphics processor (GPU)
• DRAM memory
• Keyboard
• LCD monitor

Notebooks & desktops

Typical server architecture

• One to four processors (CPU)
• DRAM memory (with ECC)
• One or more GPUs (optional)
• Storage: hard drives, SSDs
• Ethernet
• Access is almost always via
network ports using TCP/IP

Servers

Computational Clusters

• Many (10s-1000s) servers (“nodes”)
• Many CPUs per node with 8-80 cores
• 100Gb+ network
• Fast InfiniBand (100Gb) interconnects between nodes
• Linux

High Performance Computing (HPC)

Typical HPC architecture

• To use High Performance Computing, you must know how to use Linux
• Linux is robust, scalable to inter-connected server setting and is free
• Works well in multi-user environment
• Full source code is available
• Based on the principles of Unix: in use since 1969, encouraging minimalist, modular,

extensible software development
• Linux have evolved from command line only to GUIs on notebooks (KDE, Gnome)
• HPC systems use the Linux command line

Why Linux?

Use the Secure Shell protocol (SSH)

• Under Linux or Mac OS X

• Open a terminal and type: ssh username@hostname
• (for example, ssh johnsmith@hpc2.sun.ac.za)

• Under Windows

• Download and use MobaXterm (https://mobaxterm.mobatek.net/)

Connecting to an HPC system

• At Stellenbosch University the HPC is at hpc2.sun.ac.za
• Stellenbosch students and staff can register for an account at sun.ac.za/hpc

Using MobaXterm

• Launch MobaXterm
• Click the “Session” icon
• Select “SSH” in the dialog box that is displayed
• Enter the Remote Host as “hpc2.sun.ac.za”
• Make sure port 22 is specified
• Click OK

Connecting to the HPC with MobaXterm

The MobaXterm interface
• Login with your username and your password, as prompted

Terminal
window

GUI file
manager
Home directory
on HPC

Getting help

• For a brief summary on how to use a command, and the options associated with the
command line options, type command --help.

• For example cp --help

[hpatterton@hpc2 ~]$ cp --help
Usage: cp [OPTION]... [-T] SOURCE DEST
or: cp [OPTION]... SOURCE... DIRECTORY
or: cp [OPTION]... -t DIRECTORY SOURCE...

Copy SOURCE to DEST, or multiple SOURCE(s) to DIRECTORY.

Mandatory arguments to long options are mandatory for short options too.
-a, --archive same as -dR --preserve=all

--attributes-only don't copy the file data, just the attributes

• For some Bash shell commands (see later), try help command
• To view the built-in manual page, try man command
• Conventions: [] indicate optional arguments, italics indicate replaceable parameters
• If you have forgotten or do not know, Google

Linux commands – getting help

Command line options

• Many commands (programs) have optional command line settings or options
• By convention, command line options appear as the first argument(s)
• Two forms of options exist, long-form and short-form options
• Long options start with two hyphens, “--”, followed by a word
• Short-form options start with one hyphen, “-”, followed by one letter or digit
• By convention, short-form options can be combined, usually in any order:

options in ls -a -l -F can be combined as ls -alF or ls -laF etc
• Most short-form options have a corresponding long option: ls -a is the
• same as ls --all, but ls -l is ls --format=long
• Some options have arguments which may be optional: tail -n 20 myfile

or tail --lines=20 myfile

Linux command options

• cd ~ # change directory to my home directory (/Home/johnsmith,
but system dependent). The tilde is the shorthand for the
logged-in users home directory

• cd ~/myscripts/src/dna # Change directory to ~/myscripts/src/dna
• ls # List the contents of the directory that I am currently “in”
• cd src; ls # Multiple commands can go on one line, separated by “;”
• pwd # show the current working directory (directory that I am in)
• ls --help # Over five pages of help on the “ls” command
• man ls # SPACE or PAGEDOWN for the next page, “q” to quit
• ls -a -l # “-a”: also list files starting with “.”; “-l”: more detailed format
• ls -al # Combining command line options
• ls --all -l # Mixing long and short-form options

Simple commands

The HPC currently has the following compute specifications

• 1x 80-core Intel Xeon E7-4850 @ 2.00GHz with 1024GB RAM, Infiniband interconnect
• 3x 48-core Intel Xeon E5-2650 v4 @ 2.20GHz with 512GB RAM, Infiniband interconnect
• 2x 64-core AMD Opteron 6274 @ 2.20GHz with 128GB RAM, Infiniband interconnect
• 2x 24-core Intel Xeon X5650 @ 2.67GHz with 48GB RAM, Infiniband interconnect
• 3x 16-core Intel Xeon E5530 @ 2.40GHz with 24GB RAM

The total is 448 available cores

HPC2 at Stellenbosch

• https://sun.ac.za/hpc

Absolute pathnames

• Any file or directory can be uniquely represented by an absolute path
• gives the full name of the file or directory
• starts with the root “/” and lists each directory along the way
• has a “/” to separate each directory in the path
• Example /home/johnsmith/workshop/spades_data

Pathnames

Relative pathnames

When a program (command) is running, it is called a process
• Every process has a current working directory (the directory I am currently “in”)
• When you log in, the system sets your current working directory to your home directory,
something like /home/johnsmith (highly system dependent)
• Any process can change its current working directory (“cd directory”) at any time
• A relative pathname points to a path that starts at the current directory

• does not start with “/”
• path components are still separated with slashes “/”

• Current directory is denoted by “.” (dot)
• The directory above the current one (parent directory) is denoted by “..” (dot-dot)

Pathnames

Assume current directory is /home/hpatterton

test1.py /home/johnsmith/test1.py
t_brucei/kinetoplast/chromosome.ini /home/johnsmith/t_brucei/kinetoplast/chromosome.ini
spades_test/contigs.fasta /home/johnsmith/spades_test/contigs.fasta
./spades_test/contigs.fasta /home/johnsmith/spades_test/contigs.fasta
../file.txt /home/file.txt

Examples of relative paths

Relative path Absolute path

Official manual page entry (“man bash”)

• Bash is a Unix shell and command language written by Brian Fox for the GNU Project as a free software
replacement for the Bourne shell

• Bash is an SH-compatible command language interpreter that executes commands read from the
standard input (typically, the keyboard) or from a file

• Bash is a command processor that runs in a text window where the user types commands
• Bash can also read and execute commands from a file, called a shell script
• Like all Unix shells, it supports filename globbing (wildcard matching), piping, command substitution,

variables, and control structures for condition-testing and iteration.
• Interprets your typed commands and executes them
• Just another Linux program, started by the system when you log in

Bourne again shell (bash)

Some features of Bash

• Powerful command line with shortcuts to make things easier
• Tab completion (press the TAB key to complete commands and pathnames, TAB TAB
• to list all possibilities)
• Command line editing:

• ↑ (Up-Arrow) to recall previous commands
• CTRL-R (C-R or^R) to search for previous commands
• ← and → to move along current command line

• Bash is a full programming and scripting language:
• Variables and arrays
• Loops (for; while; until), control statements (if … then … else; case)
• Functions and co-processes
• Text processing (“expansion” and “parameter substitution”)
• Simple arithmetic calculations
• Input/output redirection (e.g., redirect output to files)

Bourne again shell (bash)

• The Bash shell interprets certain characters in the command line by replacing them
with matching pathnames

• Called pathname expansion, pattern matching, wildcards or “globbing”
• At the start of a filename: “~” is replaced with your home directory, “~user” is

replaced with the home directory of user user
• For existing pathnames: “*” matches any string, “?” matches any single character,

“[abc]” matches any one of the enclosed characters (in this case, “a”, “b” or “c”)
• Glob patterns “*”, “?” and “[…]” only match existing pathnames
• Even for pathnames that do not exist: “{alt1,alt2,…}” lists alternatives, “{n..m}”
• lists all numbers between n and m, “{n..m..s}” from n to m in steps of s (brace

expansion)

File and directory patterns

• Linux allows any characters in a filename except “/” and NUL
• You may create filenames with unusual characters in them:

• spaces and tabs
• starting with “-”: conflicts with command line options
• question marks “?”, asterisks “*”, brackets and braces
• other characters with special meanings: “!”, “$”, “&”, “#”, “"”, etc.

• To match such files: use the glob characters “*” and “?”
• Linux file systems are case-sensitive: README.TXT is different from readme.txt, which is
• different from Readme.txt and ReadMe.txt!
• File type suffixes (e.g., “.txt”) are optional but recommended. Use the suffix to remind

yourself what the format of a file is (fasta, fastq, bam, vcf, etc.)
• Filenames starting with “.” are usually hidden from globs and ls output

• Use “a”-“z”, “A”-“Z”, “0”-“9”, “-”, “_” and “.” only

File and directory names

Exercise

cd; ls # Change to your home directory and list its contents (should be empty)
mkdir test1 # Create the directory test1
cd test1 # … and change to it
mkdir sub{1,2,3} # What does this do?
mkdir ../test2 # Where is the directory test2 created?
cd ../test2 # Change to it
mkdir sub{04..10} # How to make lots of subdirectories in one go!
cd ~ # Go back to the home directory

• To create a directory: “mkdir dir”
• To create intermediate directories as well: “mkdir -p dir”
• To remove an empty directory: “rmdir dir”

Managing directories

Make a new, “empty file” in the working directory: touch filename
To output one or more file’s contents: cat filename …
• To view one or more files page by page: less filename …
• To copy one file: “cp source destination”
• To copy one or more files to a directory: “cp filename dir”
• To preserve the “last modified” time-stamp: “cp -p”
• To copy recursively: “cp -pr source destination”
• To move one or more files to a different directory: “mv filename dir”
• To rename a file or directory: “mv oldname newname”
• To remove files: “rm filename”

Recommendation: use “ls filename …” before rm or mv: what happens if you
accidentally type “rm *”?

Managing files

• To copy whole directory trees: cp -pr filename destination
• To copy to and from another Linux or Mac OS X system, use secure copy: scp [-p -r]

source destination
• Either source or destination (but not both) can contain a remote system identifier

followed by a colon: [user@]hostname:
• Can use rsync: rsync -vax [--delete] [--dry-run] srcdir/ destdir/
• Powerful command but tricky! Note the trailing “/” on the directory arguments

Managing files and directories

Permissions
• Each file can be made to be readable, writeable or executable
• Permissions on who can do what to files and in directories are set with the chmod command
• Look at the permissions returned by the ls -l command:

• -rw-r--r--
• Note that for directories the permission indicate that it is a directory with the set permissions

• drw-r--r--
• For a file, the permissions pattern can be divided into the directory letter and 3 groups of 3 letters

each
• - rw- r-- r--

• The first group of 3 letters refer to the user (u), the 2nd group to the group (g), and the 3rd group to
other (o)

• Within each group of 3 letters, each letter can be either on or off
• Imagine the value of r=22=4, w=21=2 and x=20=1 (see the pattern?; value 0-7, octal numbers)
• Thus, if you want to set the user permissions to rwx, the value is 4+2+1=7. If you wanted to set the

group of 3 letters to rw-, the value is 6
• So if you wanted to set u to rwx, g to rw- and o to r--, it is represented by the numbers 7, 6 and 4
• Use the command chmod 764 filename
• Generally files are set to 644 (rw-r--r--)
• You can right-click on a file in the MobaXterm GUI to set its permission

Exercize

cd ~; mkdir src; cd src
cp -pr ~/test_directory . # Copy directories recursively to “.” (current directory)
cd test_directory # Change to the newly copied directory
cat ~/myprogram1.py # Display the contents of this file
ls */*.c # List all files matching “*/*.c”
rm */*.c # … and then remove them!
ls */*.c # What happens now?
mv README my-new-filename # Rename the README file
cp INSTALL new # Make a copy of INSTALL and call it “new”
ls -l INSTALL new # What is the difference between the listings?
cp -p INSTALL same # Copy INSTALL, preserving time-stamps
ls -l INSTALL same # Verify the two files have the same date and time

Playing with pathname expansion

Transferring files to and from the HPC

• MobaXterm has easy GUI

• Standard input, standard output and standard error can be redirected to/from a file or
even “piped” to another program

• To redirect output to file, use “>filename”
• To append output to file, use “>>filename”
• To redirect input from filen, use “<filename”
• To connect the output from one program to the input of another (a pipe), use

“program1 | program2”
• To redirect output to both a file and the screen, use “| tee filename”
• Multiple pipes are allowed: “program1 | program2 | … | programN”

Redirecting input and output

Exercise

cd ~
ls > ~/dir-list1.txt # Redirect the output of ls to ~/dir-list1.txt
cat ~/dir-list1.txt # Show what is in that file
ls spades_test >> ~/dir-list1.txt # Append the output of “ls src” to ~/dir-list1
cat ~/dir-list1.txt # What does the file contain now?
wc -l < ~/dir-list1 # Run “wc -l” (count lines in a file), but use ~/dir-list1.txt
cat ~/dir-list1 | wc -l # Use a pipe from cat to wc (output of cat becomes input of wc)

Playing with file redirection

PBS scheduler runs on the head node

Portable Batch System (PB)

• A program is run on the HPC by submitting a command to the “scheduler”
• This command is part of a list of instructions (a script), requesting resources and setting other options
• The PBS scheduler places the instructions (“job”) in a queue depending on requested resources
• When the resources are available, the job is initiated (program is run) on the assigned node with the

requested number of CPUs and memory

• Shell scripts are just files containing a list of commands to be executed
• First line (“magic identifier”) must be #!/bin/bash
• Comments are introduced with #

Variables

• To set a variable, use varname=value (no spaces)
• To use the contents of a variable, use $varname or ${varname}
• Variable names start with a letter, may contain letters, numbers and _
• Variable names are case-sensitive

Simple scripting

For loops

for variable in list …; do
process using ${variable}

Done

Conditional statements (multiple “elif” allowed; “elif” and “else” clauses are optional)

if [comparison]; then # Use literal “[” and “]” characters
if-true statements

elif [second-comparison]; then
if-second-true statements

else
if-all-false statements

fi

Simple scripting, continued

While loops

while [comparison]; do
while-true statements

Done

Until loops

until [comparison]; do
while-false statements

done

Examples of comparisons

• string1 = string2 # strings string1 and string2 are equal
• number1 -lt number2 # number1 is less than number2
• file1 -nt file2 # file1 (e.g., a data file) is newer than file2 (e.g., output file)
• See the manual page for test (“man test”) for more information

Simple scripting, continued

• Launch the MobaXterm MobaTextEditor utility
• Enter the following text

#!/bin/bash
#PBS –l walltime=00:05:00
echo "I am user $(whoami), running on $(hostname)"

• Save the text file as myscript1.pbs (or another name) on your computer
• Use “pbs” (or another meaningful term) as the filename extension for all your script files, so

you know what they are when you look at a directory listing
• Click on the “Upload” icon in MobaXterm
• Select the file that you have just saved, and click “OK”
• The file is uploaded to your current working directory on the HPC

• Run the script by typing qsub myscript1.pbs in the terminal window
• Note the assigned job number (for example, 76957)
• Refresh the MobaXterm file manager window, and find myscript1.pbs.o76957
• It contains the text “I am user johnsmith, running on n05.hpc”
• Viola! Your first script!

Creating your first script

PBS automatically redirect standard input, standard output and standard error

• standard input from /dev/null
• standard output to script_filename.ojob_number in the current working directory
• standard error to script_filename.ejob_number in the current working directory

Where did my output go?

• There are usually many versions of an app on the HPC
• How do you choose which one to use?
• Applications are managed using the module system
• On the HPC applications are stored in the /apps directory
• Module files are stored in the /app/Modules/modulefiles directory
• Module files set shell environment variables such as PATH
• PATH controls where applications are searched for (the search path)
• To see available applications enter module avail
• To see currently loaded applications enter module list
• To load an application enter module load app/application[/version]
• To unload an application enter module unload application

Running programs on the HPC

Exercise

module avail # What applications are available?
module list # What applications are currently loaded?
echo $PATH # See the current value of the PATH variable
module load app/SPAdes/3.14.0 # Set the PATH to include SPAdes
echo $PATH # What does PATH look like now?
module unload app/SPAdes # We don’t want to use spades any more…
echo $PATH # PATH no longer contains the SPAdes directory

Finding the programs

Manual: https://albertsk.files.wordpress.com/2011/12/pbs.pdf

• PBS is designed to manage the distribution of batch jobs and interactive sessions across the
available nodes in the cluster

Job Control
• qsub: Submit a job
• qdel: Delete a batch job
• qsig: Send a signal to batch job
• qhold: Hold a batch job
• qrls: Release held jobs
• qrerun: Rerun a batch job
• qmove: Move a batch job to another queue

Job Monitoring
• qstat: Show status of batch jobs
• qselect: Select a specific subset of jobs

Node Status
• pbsnodes: List the status and attributes of all nodes in the cluster

PBS commands

https://albertsk.files.wordpress.com/2011/12/pbs.pdf

To submit a job to the cluster

• Create a shell script file
• Add #PBS directives as required directly after #!/bin/bash
• Add cd $PBS_O_WORKDIR after the #PBS directives
• Submit the script to the PBS scheduler with qsub script_filename.pbs
• Wait for the job to run, checking its status with qstat
• If you have not submitted a job using qsub, you are almost certainly running your job on

the resource-scarce head node!
• Running jobs on the head node does not use the processing power of the HPC

Creating a script

Some common #PBS directives

• #PBS -N scriptname # Set a name for the script
• #PBS -P project # Charge resources from this project
• #PBS -q queuename # Which queue to submit to
• #PBS -l ncpus=n # Request n processor cores in total
• #PBS -l ngpus=n # Request n GPUs
• #PBS -l walltime=hh:mm:ss # How much time is required for running the job
• #PBS -l mem=sizeMB # How much memory is required (in MB)
• #PBS -l software=licname # Use software licence licname
• #PBS -M email # Send notifications to the email address
• #PBS -m abe # What notifications to send by email
• #PBS -l wd # Run from the same directory as submission

Common PBS directives

Here is an example of a script that requests 1 hour of execution time, renames the job to 'My-
Program', and sends email when the job begins, ends, or aborts:

#!/bin/bash
#PBS -N My-Program # Name of my job
#PBS -l walltime=1:00:00 # Run for 1 hour
#PBS -e myprog.err # Where to write stderr
#PBS -o myprog.out # Where to write stdout
#PBD –M johnsmith@company.com #Where to send e-mails
#PBS -m abe # Send email when my job aborts, begins, or ends
cd $PBS_O_WORKDIR # This command switched to the directory from which the

qsub command was run
Module load /app/myprog/1.0.0 # load myprog version 1.0.0
myprog –options argument1 # execute my program

An example script

PBS Job Id: 76814.hpc2.hpc
Job Name: small_job
Execution terminated
Exit_status=0
resources_used.cpupercent=101
resources_used.cput=00:00:09
resources_used.mem=0kb
resources_used.ncpus=1
resources_used.vmem=0kb
resources_used.walltime=00:00:05

Getting e-mails when your job aborts, starts and ends

Include the following in your script

#PBS –M e-mail_address
#PBS –m abe #specify when to send e-mail: abort (a), begin (b) or end (e)
E-mail when job finishes:

0 means no errors were generated

• If your job makes frequent writes to disk, it may improve performance to use scratch space on the
compute node instead of continuously move data between your home directory and the compute node

Using disk space on the compute node

#!/bin/bash
#PBS -l nodes=1:ncpus=1
#PBS -l walltime=5:00
#PBS -N small_job
TMP=/scratch/${PBS_JOBID} # use /scratch for compute node and /scratch2 for storage node
mkdir -p ${TMP} # make the new directory
/usr/bin/rsync -vax "${PBS_O_WORKDIR}/" ${TMP}/ # copy everything from your working directory to

the new directory on /scratch on the compute node
cd ${TMP} # change directory to new directory
module load app/fastqc # load the default fastqc application environment
fastqc ${TMP}/R1.fastq.gz ${TMP}/R2.fastq.gz # execure the application, reading the input files from the

new directory on /scratch
/usr/bin/rsync -vax ${TMP}/ "${PBS_O_WORKDIR}/“ # copy everything back from the directory on

/scratch to your working directory
[$? -eq 0] && /bin/rm -rf ${TMP} # if the copy succeeded, delete temporary files

$? is the end status of the last process to execute, and is 0 if the command was successful (without any errors)
Thus, if rsync finished successfully, [$? -eq 0] evaluates to true, the command after the && executes, i.e., everything in
directory TMP is removed

Interactive jobs

• You can perform jobs interactively on the HPC
• Use the commend qsubi or qsubix
• The qsubix passes additional information to use an X11 window for output where this is supported
• Note qsubi uses the head node which is resource scarce

[hpatterton@hpc2 ~]$ qsubi
Requesting interactive session with 4 cores, 8GB RAM, for 24 hours
qsub: waiting for job 76811.hpc2.hpc to start
qsub: job 76811.hpc2.hpc ready
[hpatterton@n05 ~]$ module load app/fastqc
[hpatterton@n05 ~]$ fastqc ~/workshop/spades_data/R1.fastq.gz
Started analysis of R1.fastq.gz
Analysis complete for R1.fastq.gz
[hpatterton@n05 ~]$

[hpatterton@hpc2 ~]$ qsubix
Requesting interactive session with 4
cores, 8GB RAM, for 24 hours
qsub: waiting for job 76812.hpc2.hpc
to start
qsub: job 76812.hpc2.hpc ready

[hpatterton@n05 ~]$ module load
app/fastqc
[hpatterton@n05 ~]$ fastqc

Interactive jobs

Note: when using qsubix, make sure of your local firewall setting allows communication (next slide)

Firewall on Windows10
• Make sure MobaXterm is in the list of applications that may communicate through the firewall

You can look at the queue by using the qstat command.
qstat will display the queue ordered by JobID.

[username@hpc1 ~]$ qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
32.hpc1 JobName username 351:04:3 R long
33.hpc1 JobName username 351:06:1 R day
34.hpc1 JobName username 390:30:2 R week
40.hpc1 JobName username 496:38:2 R month
46.hpc1 JobName username 506:13:5 R long

Examining the queue

[hpatterton@hpc2 ~]$ pestat
Queues: short day week month long
Node state cpu memory jobids/users
---- tot used tot used
n01.hpc free 80 0 1022G 0%
n02.hpc free 48 0 254G 0%
n04.hpc free 48 0 510G 0%
n05.hpc free 48 0 510G 0%
n11.hpc free 96 0 503G 0%
n12.hpc free 80 0 3022G 0%

Look at node loads

You can look at the load on each node using the pestat command.

Look at node loads, graphically
You can get a “graphic” presentation of node loads and running processes with the htop command

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

