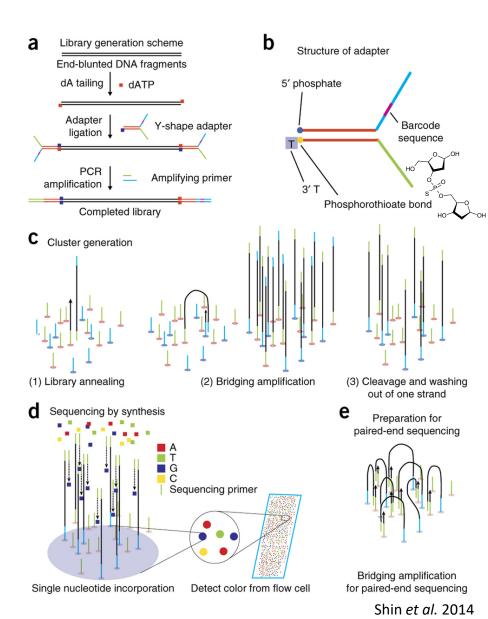
Introduction to Next Generation Sequencing (NGS)

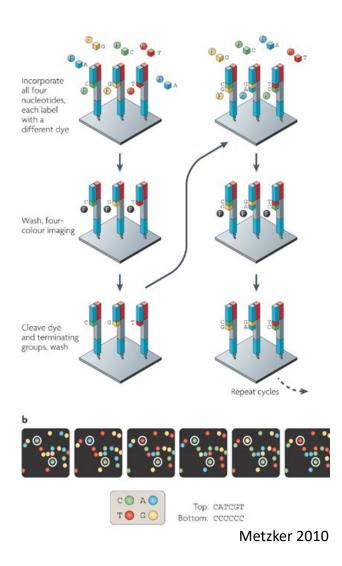
Hugh Patterton

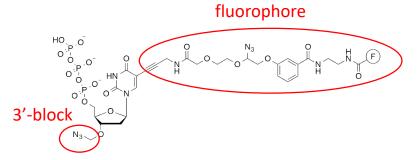
hpatterton@sun.ac.za


Room 2010 AI Perold Building

Many different NGS techniques

- Sanger sequencing sequenced one molecule per 4 reaction (= 4 lanes on a sequencing gel)
- NGS is highly parallelised, i.e., sequencing millions of molecules simultaneously
- One run takes hours to days
- Samples can be multiplexed
- Human Genome Project cost ~\$3B over 15 years
- Can obtain whole genome sequences today for ~\$1K


Technology	Read length (bp)	Reads per run	Time per run	Cost per megabase (US\$)	Accuracy (%)
Roche 454	700	1 million	1 day	10	99.90
Illumina	50–250	<3 billion	1–10 days	~0.10	98
SOLID	50	~1.4 billion	7–14 days	0.13	99.90
Ion Torrent	200	<5 million	2 hours	1	98
Pacific Biosciences	2900	<75,000	<2 hours	2	99
Sanger	400–900	N/A	<3 hours	2400	99.90

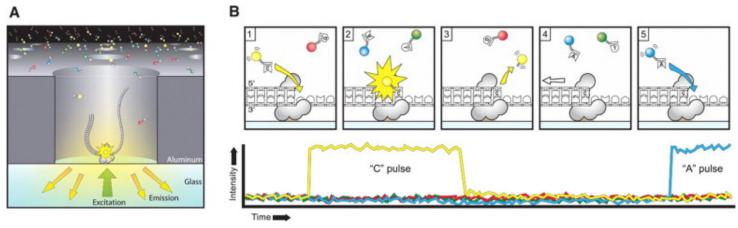

Illumina: Cyclic Reversible Termination

- Randomly fragment the DNA (genome) sample
- Ligate a Y-adapter to the DNA fragments
- Adapter can contain barcode sequence for multiplexing
- Amplify DNA
- Anneal single strands to flow-cell surface
- Bridge amplify the generate clusters
- Wash out one strand
- Perform sequencing with fluorescent nucleotides
- Perform bridge amplification to regenerate clusters, wash out "other" strand
- Sequence from other end of original fragment (paired-ends)

Reversible terminators

Structure of fluorescently labelled dTTP used in Illumina sequencing

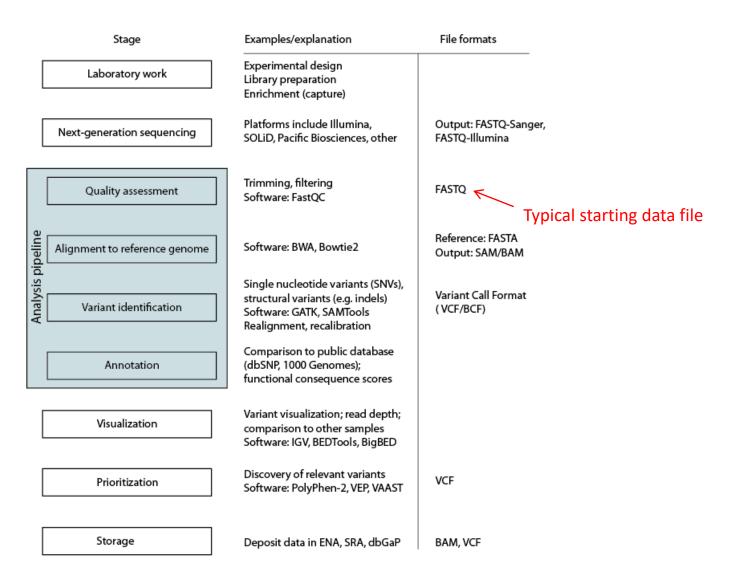
- 1. Sequencing primer extended in the presence of fluorescent dNTPs
- 2. Remove unincorporated nucleotides
- 3. Record image of clusters
- 4. Cleave of fluorophore and 3'-block using tris(2-carboxyethyl)phosphine (TCEP)
- 5. Repeat from step 1
- 6. The series of colours for each cluster is the sequence of that cluster
- Can re-synthesize strand and sequence from other end (paired ends)


PacBio Single Molecule Real Time

- Hairpin adaptors (green) are ligated to the ends of a double-stranded DNA molecule (yellow and purple), forming a closed circle (= SMRTbell)
- The polymerase (gray) is anchored to the bottom of a zeromode waveguide (ZMW) and incorporates bases into the read strand (orange)

- Each single molecule real time (SMRT) cell contains 150,000 ZMWs
- Approximately 35,000–75,000 of these wells produce a read in a run lasting 0.5–4 h, resulting in 0.5–1 Gb of sequence

- A SMRTbell (gray) diffuses into a ZMW, and the adaptor binds to a polymerase immobilized at the bottom
- Incorporation by the polymerase of the fluorescent nucleotide places it at the bottom of the well, allowing detection of fluorescence
- Each of the four nucleotides is labeled with a different fluorescent dye (indicated in red, yellow, green, and blue)


There any many NGS technologies

Platform	Library/ template preparation	NGS chemistry	Read length (bases)	Run time (days)	Gb per run	Machine cost (US\$)	Pros	Cons	Biological applications	Refs
Roche/454's GS FLX Titanium	Frag, MP/ emPCR	PS	330*	0.35	0.45	500,000	Longer reads improve mapping in repetitive regions; fast run times	High reagent cost; high error rates in homo- polymer repeats	Bacterial and insect genome <i>de novo</i> assemblies; medium scale (<3 Mb) exome capture; 16S in metagenomics	D. Muzny, pers. comm.
Illumina/ Solexa's GA _{ii}	Frag, MP/ solid-phase	RTs	75 or 100	4‡, 9§	18‡, 35§	540,000	Currently the most widely used platform in the field	Low multiplexing capability of samples	Variant discovery by whole-genome resequencing or whole-exome capture; gene discovery in metagenomics	D. Muzny, pers. comm.
Life/APG's SOLiD 3	Frag, MP/ emPCR	Cleavable probe SBL	50	7‡, 14§	30*, 50§	595,000	Two-base encoding provides inherent error correction	Long run times	Variant discovery by whole-genome resequencing or whole-exome capture; gene discovery in metagenomics	D. Muzny, pers. comm.
Polonator G.007	MP only/ emPCR	Non- cleavable probe SBL	26	55	125	170,000	Least expensive platform; open source to adapt alternative NGS chemistries	Users are required to maintain and quality control reagents; shortest NGS read lengths	Bacterial genome resequencing for variant discovery	J. Edwards, pers. comm.
Helicos BioSciences HeliScope	Frag, MP/ single molecule	RTs	32*	8*	37‡	999,000	Non-bias representation of templates for genome and seq-based applications	High error rates compared with other reversible terminator chemistries	Seq-based methods	91
Pacific Biosciences (target release: 2010)	Frag only/ single molecule	Real-time	964*	N/A	N/A	N/A	Has the greatest potential for reads exceeding 1 kb	Highest error rates compared with other NGS chemistries	Full-length transcriptome sequencing; complements other resequencing efforts in discovering large structural variants and haplotype blocks	S. Turner, pers. comm.

*Average read-lengths. *Fragment run. ⁹Mate-pair run. Frag, fragment; GA, Genome Analyzer; GS, Genome Sequencer; MP, mate-pair; N/A, not available; NGS, next-generation sequencing; PS, pyrosequencing; RT, reversible terminator; SBL, sequencing by ligation; SOLiD, support oligonucleotide ligation detection.

Typical NGS pipeline

• A pipeline is a series of programs or scripts, used consecutively, to perform a complete analysis

FASTQ file format

The FASTQ file is a **text file** composed of blocks of text, with each block containing the following:

- 1. @Sequence name
- 2. Sequence
- 3. +Sequence name (may be absent)
- 4. Phred quality score

Phred score

Phred was an early base calling program written by Phil Green of University of Washington Genome Center, and was probably derived from "Phil's Read Editor"

The **Phred score (Q)** is a quantity, where the **probability (p)** that the assignment is **<u>incorrect</u>** is given by:

$$p = 10^{\frac{-Q}{10}}$$

: if Q = 30, $p = 10^{\frac{-30}{10}} = 10^{-3} = 0.001$: a 1 in 1000 chance that the assigned base is incorrect

Why are Phred scores given as letters?

The classic 7 bit (0-127) ASCII table

The first "real" character (!) has an ASCII value of 33

<u>Dec</u>	Hx	Oct Ch	ar	Dec	Hx	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Hx	Oct	Html Cł	<u>nr</u>
0	0 0	DOO NUI	(null)	23	20	040	∉# 32;	Space	64	40	100	¢#64;	0	96	60	140	«#96;	8
1			(start of heading)	33	21	041	⊛# 33;	1				 ≪#65;		97	61	141	∝#97;	a
2	2 0	002 <mark>ST</mark> >	(start of text)	34	22	042	"	**	66	42	102	B	в	98	62	142	& #98;	b
3	3 (003 <mark>ET</mark> >	(end of text)	35	23	043	 ∉35;	#	67	43	103	C	С					c
4	4 (004 <mark>E01</mark>	(end of transmission)	36	24	044	∝# 36;	ę.	68	44	104	 4#68;	D	100	64	144	≪#100;	d
5	5 0	005 <mark>EN</mark> Q	(enquiry)	37	25	045	∝# 37;	*	69	45	105	E	Е	101	65	145	e	e
6			(acknowledge)	I			∝# 38;		1			 ∉#70;					f	
- 7			(bell)				∝# 39;					G					 <i>∝</i> #103;	
8		010 <mark>BS</mark>	(backspace)	I			∝#40;					H			_		h	
9			(horizontal tab)				¢#41;		1			∉#73;					i	
10		012 <mark>LF</mark>	(NL line feed, new line)				¢#42;					¢#74;					j	
11		013 VT	(vertical tab)	I			+			_		K					k	
12	СО	014 FF	(NP form feed, new page)				«#44;					& # 76;					l	
13	DO	015 <mark>CR</mark>	(carriage return)				-					M					m	
14	Ε (016 <mark>SO</mark>	(shift out)				«#46;					& #78;					n	
15	F (017 <mark>SI</mark>	(shift in)	47	2F	057	¢#47;		1			O					o	
16	10 0	D20 DLE	(data link escape)				«#48;					 ∉#80;					p	-
			(device control 1)	49	31	061	«#49;	1	1			Q	_				q	-
18	12 0	022 DC2	(device control 2)				 ≪#50;					 ∉#82;					r	
19	13 (023 <mark>DC</mark> 3	(device control 3)	51	33	063	3	3	83	53	123	 ∉#83;	S				s	
20	14 (024 DC4	(device control 4)				4					 ∉84;					t	
			(negative acknowledge)				∝# 53;					 ∉#85;					u	
22	16 (026 <mark>SVN</mark>	(synchronous idle)				∝#54;					V					v	
23	17 (027 ETE	(end of trans. block)				∝#55;					 ∉#87;					w	
24	18 0	030 <mark>CAN</mark>	(cancel)	56	38	070	∝#56;	8				X		120	78	170	∝#120;	х
		031 <mark>EM</mark>	(end of medium)	57	39	071	∝#57;	9				Y					y	_
26	1A (032 <mark>SUE</mark>	(substitute)	58	ЗA	072	∝# 58;	÷	90	5A	132	Z	Z	122	7A	172	z	z
27	1B (033 <mark>ES</mark> O	(escape)	59	ЗB	073	∝# 59;	1.00	91	5B	133	[Γ				∉#123;	
28	1C (034 <mark>FS</mark>	(file separator)				∝#60;					 ∉#92;						
29	1D (035 <mark>GS</mark>	(group separator)	61	ЗD	075	∝#61;	=	93	5D	135	∝# 93;	1				∝#125;	
30	1E (036 <mark>RS</mark>	(record separator)				∝# 62;		94	5E	136	∝# 94;					∝#126;	
31	1F (037 <mark>US</mark>	(unit separator)	63	ЗF	077	∝# 63;	2	95	5F	137	∝#95;	_	127	7F	177	∝#127;	DEL
																1 1 -	T 11	

Source: www.LookupTables.com

ASCII = <u>A</u>merican <u>S</u>tandard <u>C</u>ode for <u>I</u>nformation <u>I</u>nterchange

Phred score table

Accuracy (p)	Phred score (Q)	Q+33	ASCII code			
1.0	0	33				
0.1	10	43	+			
0.01	20	53	5			
0.001	30	63	?			
~0.0002	37	70	F			
		Ļ				
10 ^{-9.3}	93	126 (127 is "DEL")	~			

@HWI-D00466:62:C6UETANXX:5:1101:1270:2163 1:N:0:CGATGT

- Each sequenced nucleotide is assigned a quality score
- A Phred score higher than 20 (99% accurate) is generally OK