
Hidden Markov Models (HMMs)

Find the hidden tiger in the image…
https://www.moillusions.com/hidden-tiger-illusion/

Biochemistry 324
Bioinformatics

Markov Chain
• A Markov chain a system represented by N states, s1,s2,s3,…,sN which can be seen
• There are discrete times t=0, t=1, … during which the system is in state s1,s2,…
• At time step t the system is in state qt where qt∈{s1,s2,s3,…,sN}
• The system can make a transition between states at consecutive time points with

certain probabilities, i.e. p(qt+1=s1|qt=s2) = 0.5.
• Moving from state qt to state qt+1 depends only on qt, not qt-1, qt-2 etc.
• This is known as a first order Markov chain
• In the general case, the transition probability aij=p(qt+1=sj|qt=si) going from si to sj
• The chance to start with s1,s2 or s3 is π = {0.5,0.3,0.2}

End state

St
ar

t s
ta

te

s1 s2 s3

s1 0 0.5 0.5

s2 0.2 0.5 0.3

s3 0.2 0.6 0.2

s1

s2 s3

0

0.5
0.5

0.2
0.6

0.2

0.5

0.3

0.2

Thus, the chance of observing the sequence s1,s3,s3,s2,s1,s3 =
0.5×0.5×0.2×0.6×0.2×0.5=0.003

[…qt+1=s1 given that qt=s2…]

curtain

s1

s2
s3

0.5

0.2

0.3

0.3

0.4

0.3

0.6

0.1
0.3

Hidden Markov Model (HMM)

• There are 3 bowls
• Each bowl has 10

coloured balls
• There is an equal

probability to select
any ball in a bowl

R Y G

s1 0.4 0.3 0.3

s2 0.5 0.1 0.4

s3 0.3 0.5 0.2

• You only observe the series of coloured balls on this side of the curtain
• Did the person choosing the balls, pick them from the 3 bowl according to the

transition probabilities?

Formal description of a HMM

T = length of observation sequence
N = number of states (bowls)
M = number of observation symbols (coloured balls)
Q = {q1,q2,…,qN} series of states
V = {v1,v2,…,vN} set of possible observation symbols

A HMM λ is described by
A = {aij} where aij = p(qj at t+1|qi at t) the state transition probabilities
B = {bj(k)} where bj(k) = p(vk at t|qi at t)
π = {πi} where πI = p(qi at t=1) initial state distribution
The model λ is written as λ = (A,B,π)

An observation sequence O = O1,O2,…,ON is generated as follows:
1. Choose an initial state q1 according to the initial state distribution π
2. Set t = 1
3. Choose Ot according to b1t(k), the symbol probability distribution of state q1
4. Choose a state q2 according to {aij} for
5. Set t = t+1
6. Return to 3 if t < T

curtain

s1

s2
s3

0.5

0.2

0.3

0.3

0.4

0.3

0.6

0.1
0.3

R Y G

s1 0.4 0.3 0.3

s2 0.5 0.1 0.4

s3 0.3 0.5 0.2

These are the aij

These are the bj(k)

This is O

If we could start with any of the 3 bowls, then π = {0.33,0.33,0.33}

Demystified

The 3 problems to solve for a HMM

Problem 1 – What is the chance that a pattern was generated by a HMM
Given observation sequence O = O1,O2,…,ON and the model λ = (A,B,π)
How do we compute p(O|λ), i.e., how do we compute the probability of the
observation sequence O given the model λ?

Problem 2 – What is the most likely series of states to have produced a pattern
Given observation sequence O = O1,O2,…,ON and the model λ = (A,B,π)
How do we compute a series of states Q = {q1,q2,…,qN} that is likely to have
produced O?

Problem 3 – Can the HMM parameters be adjusted to better describe a pattern
How can we adjust the model parameters λ = (A,B,π)
to maximize p(O|λ)?

Forward/backward algorithm

Viterbi algorithm

Baum-Welch algorithm

Is this a TF binding site?

Is this a non-coding region?

What HMM λ best represents this?

Problem 1 – What is the chance that a pattern
was generated by a HMM

We are given an output series O = {O1,O2,…,OT} representing T observations
This must have been produced by T states (not necessarily different states)
Say we observe 3 balls R, Y and G (T=3)
Let us assume, also this was produced by the state series Q ={s1,s2,s3}
The probability of this series is A = π1*a12*a23 = 0.33*0.2*0.4
The probability of the R, Y and G output series from this specific state series is
B = b1(1)*b2(2)*b3(3) = 0.4*0.1*0.2 (see bj(k) table on previous slide)
Thus the probability of getting the observed series O from A and B,
p(O|A,B) = π1*a12*a23*b1(1)*b2(2)*b3(3) = 0.33*0.2*0.4*0.4*0.1*0.2 = 0.0002
But this is only one possible path. We can also choose A = π2*a22*a21
p(O|A,B) = π2*a22*a21 *b2(1)*b2(2)*b1(3) = 0.33* 0.3*0.3*0.5*0.1*0.3 = 0.0004
The probability of O = R, Y and G is the sum of all the independent, individual paths
(remember independent, mutually exclusive probabilities add: a chance that you flip
a head OR a tail is 0.5+0.5 = 1)

But there are 3*3*3 = 27 possible paths!

Ο(NT) for 20 states with 50 samples (50 residue peptide): 2050 = 1034 years to
calculate at 1 calculation/nanosecond

N

T

We need an algorithm!

*********3 3 3 3 3 3 3 3 3 3 = 310 ≈ 60,000

s1

s2 s3

a11

a12

a13

a33

a32

a31

a22

a23

a21

b11,b12

b31,b32
b21,b22

Imagine the are three states s1, s2 and s3
Each state has 2 outputs b11, b12, b21, b22, b31 and b32
If we have a pattern of 10 symbols (T = 10)
There are thus 310 (~60,000) paths to produce 10 symbols

What if we store the answer at each t?

The Forward/backward algorithm
First the forward part…

α11=π1*b1k

α12= π2*b2k

α21=α11*a11*b1k+ α12*a21*b1k+ α13*a31*b1k

α33=α21*a13*b3k+ α22*a23*b3k+ α23*a33*b3k

α10,1=α91*a11*b1k+ α92*a21*b1k+ α93*a31*b1k

α13= π3*b3k

• Lets write α, the sum of the probabilities to produce output bqk at state qt
at time t as αtq

q=s1

q=s2

q=s3
1 2 3 4 5 6 7 8 9 10 t

• So, at any time t+1, the probability to arrive at a state qt+1 is the sum of the
probabilities to arrive from states qt

• αt+1(j) = ∑𝑖𝑖=1𝑇𝑇 α𝑡𝑡 𝑖𝑖 𝑎𝑎𝑖𝑖𝑖𝑖 𝑏𝑏𝑖𝑖 𝑘𝑘 eqn 1
• Thus, starting at t=1, calculate αt(i) for each state, remember it, and use it to

calculate each αt+1(i) at t=t+1, etc.
• Thus, for this example you will perform 32*10 calculations, i.e. Ο(N2T)
• You finally add the α10,q values to get the overall probability to observe pattern O

bqk is a common term…

The Forward algorithm – implementation

s1

s2 s3

0.1

0.4
0.5

0.5
0.3

0.2

0.4

0.3

0.3

1 2 3

1 0.1 0.4 0.5

2 0.3 0.4 0.3

3 0.2 0.3 0.5

1 2

1 0.5 0.5

2 0.5 0.5

3 0.5 0.5

aij

bj(k)

An example HMM for the Forward algorithm

O={0,0,0,0,0,1,1,1,1,1}

def forward(pi_matrix,a_matrix,b_matrix,pattern_list):
number_of_states = len(a_matrix)
length = len(pattern_list)
alpha_matrix = np.zeros(number_of_states,dtype = float)
temp_alpha_matrix = np.zeros(number_of_states,dtype = float)
alpha_matrix = np.copy(pi_matrix)
alpha_results = np.zeros((number_of_states,length),dtype = float)
for i in range(length):

for j in range(number_of_states):
if(i==0):

temp_alpha_matrix[j] =
alpha_matrix[j]*b_matrix[j,pattern_list[i]]

else:
temp_alpha_matrix[j] =
np.dot(alpha_matrix,a_matrix[:,j])*
b_matrix[j,pattern_list[i]]

alpha_results[j,i] = temp_alpha_matrix[j]
alpha_matrix = np.copy(temp_alpha_matrix)

return(np.sum(alpha_matrix))

Forward algorithm code
pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.5,0.5],[0.5,0.5]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]

Forward algorithm code output
alpha 0 0 = 0.2
alpha 1 0 = 0.15
alpha 2 0 = 0.15
alpha 0 1 = 0.0475
alpha 1 1 = 0.0925
alpha 2 1 = 0.11
alpha 0 2 = 0.02725
alpha 1 2 = 0.0445
alpha 2 2 = 0.05325
alpha 0 3 = 0.0133625
alpha 1 3 = 0.0223375
alpha 2 3 = 0.0268
alpha 0 4 = 0.00669875
alpha 1 4 = 0.01116
alpha 2 4 = 0.01339125
alpha 0 5 = 0.0033480625
alpha 1 5 = 0.0055804375
alpha 2 5 = 0.0066965
alpha 0 6 = 0.00167411875
alpha 1 6 = 0.002790175
alpha 2 6 = 0.00334820625
alpha 0 7 = 0.0008370528125
alpha 1 7 = 0.0013950896875
alpha 2 7 = 0.0016741075
alpha 0 8 = 0.00041852684375
alpha 1 8 = 0.000697544625
alpha 2 8 = 0.00083705353125
alpha 0 9 = 0.000209263389062
alpha 1 9 = 0.000348772323437
alpha 2 9 = 0.0004185267875
Probability = 0.0009765625

• Danger of underflow
• Add logarithms

The Backward algorithm

1 2 3 4 5 6 7 8 9 10 t

βT = 1

βi(t-1) = ∑𝑗𝑗=1𝑁𝑁 𝑎𝑎𝑖𝑖𝑖𝑖β𝑖𝑖 𝑡𝑡 𝑏𝑏𝑖𝑖(𝑘𝑘)

Ο(N2T)

Calculate βi(t-1) for every t from t=T to t=1
Finally max ∑𝑗𝑗=1𝑁𝑁 π𝑖𝑖β𝑖𝑖 𝑡𝑡 𝑏𝑏𝑖𝑖 𝑘𝑘 is calculated

The Backward algorithm is the reverse of the Forward algorithm
Use either, not both!

We must be at t=10, because we have 10 symbols

β1,10=1*b1k+1*b2k+1*b3k

Accounts for the starting π-distribution

β12= (a11β13+a12β23+a13β33)b1k

Backwards algorithm code

def backward(pi_matrix,a_matrix,b_matrix,pattern_list):
number_of_states = len(a_matrix)
length = len(pattern_list)
beta_matrix = np.ones((number_of_states,1),dtype=float)
temp_beta_matrix = np.zeros((number_of_states,1),dtype = float)
beta_results = np.ones((number_of_states,length),dtype = float)
for i in range(length-1,-1,-1): #N-1 to 0, backwards

for j in range(number_of_states):
temp_beta_matrix[j,0] =
np.dot(a_matrix[j,:],beta_matrix[:,0])*
b_matrix[j,pattern_list[i]]
beta_results[j,i] = temp_beta_matrix[j,0]

beta_matrix = np.copy(temp_beta_matrix)
return(np.dot(pi_matrix,beta_matrix))

pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.5,0.5],[0.5,0.5]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]

beta 0 0 = 0.0009765625
beta 1 0 = 0.0009765625
beta 2 0 = 0.0009765625
beta 0 1 = 0.001953125
beta 1 1 = 0.001953125
beta 2 1 = 0.001953125
beta 0 2 = 0.00390625
beta 1 2 = 0.00390625
beta 2 2 = 0.00390625
beta 0 3 = 0.0078125
beta 1 3 = 0.0078125
beta 2 3 = 0.0078125
beta 0 4 = 0.015625
beta 1 4 = 0.015625
beta 2 4 = 0.015625
beta 0 5 = 0.03125
beta 1 5 = 0.03125
beta 2 5 = 0.03125
beta 0 6 = 0.0625
beta 1 6 = 0.0625
beta 2 6 = 0.0625
beta 0 7 = 0.125
beta 1 7 = 0.125
beta 2 7 = 0.125
beta 0 8 = 0.25
beta 1 8 = 0.25
beta 2 8 = 0.25
beta 0 9 = 0.5
beta 1 9 = 0.5
beta 2 9 = 0.5
Probability = 0.0009765625

Backward algorithm code output

Same p as with the Forward algorithm

Applications of Problem 1 – What is the chance
that a pattern was generated by a HMM

• A normal EKG is composed of three wave segments: the P, the QRS
complex and the T

normal QR deflection RS deflection

• The measured EKG can be compared to normal and abnormal HMM to
detect cardiac problems

• Word and image recognition

http://linguisticmystic.com

http://www.medicine-on-line.com

Excuse me while I kiss the sky
vs

Excuse me while I kiss this guy
Jimmy Hendrix – Purple Haze

• Compare a sequence to a trained HMM for functional sequences such as TATA
boxes, transcription factor binding sites, replication origins, centromeres, etc.

TF TATA ORF

Problem 2 – What is the most likely series of states
to have produced a pattern

Given observation sequence O = O1,O2,…,ON and the model λ = (A,B,π)
How do we compute a series of states Q = {q1,q2,…,qN} that is likely to
have produced O?

s1

s2

s3

NT possible paths (light grey arrows), i.e. Ο(NT) – unfeasible calculation
The Viterbi algorithm finds a path that results in the largest cumulative
probability of the output pattern O (illustrated by the black arrows)
Viterbi is related to the Forward algorithm, but records the maximum
probability for the transitions to a state qi, as opposed to the sum of all
probabilities for the qi-1 to qi transition
Viterbi algorithm complexity: Ο(N2T)
Dynamic programming type algorithm

Viterbi algorithm

s2

s3

s1

δi1 = max[πi*bi(k)] t = 1
δit = max[δit-1*aij*bj(k)] 2 ≤ t ≤ N

For the maximum δit for every state i at every time t, record the δit-1 that
resulted in the current max δit in matrix Ψt

At t = T, choose the maximum δit, and trace the path that resulted in that
maximum using the Ψt matrix back to t=1

δ12 = max
δ11∗aij∗bj(k)
δ21∗aij∗bj(k)
δ31∗aij∗bj(k)

δ33 = max
δ12∗aij∗bj(k)
δ22∗aij∗bj(k)
δ32∗aij∗bj(k)

def viterbi(pi_matrix,a_matrix,b_matrix,pattern_list):
number_of_states = len(a_matrix)
length = len(pattern_list)
delta_matrix = np.zeros((number_of_states,length),dtype = float)
temp_delta_matrix = np.zeros(number_of_states,dtype = float)
phi_matrix = np.zeros((number_of_states,length), dtype=int)
path_matrix = np.zeros((length), dtype=int)
for position_in_pattern in range(length):

for current_state in range(number_of_states):
for previous_state in range(number_of_states):

if(position_in_pattern == 0): #handle t=1 use pi_matrix
temp_delta_matrix[previous_state] = pi_matrix[previous_state]*

b_matrix[current_state,pattern_list[position_in_pattern]]
else:

temp_delta_matrix[previous_state] = delta_matrix[previous_state,
position_in_pattern-1]*a_matrix[previous_state,current_state]*
b_matrix[current_state,pattern_list[position_in_pattern]]

delta_matrix[current_state,position_in_pattern] =
np.max(temp_delta_matrix)
phi_matrix[current_state,position_in_pattern] =
np.argmax(temp_delta_matrix)

path_matrix[length-1]=np.argmax(delta_matrix[:,length-1])
for position in range(length-1,0,-1):

path_matrix[position-1] = phi_matrix[path_matrix[position],position]
return(path_matrix)

Viterbi algorithm code

pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.2,0.2],[0.1,0.1]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]

Note the emission probability of state 3 is low

Viterbi algorithm output
t = 1 delta 0 = 0.2 delta 1 = 0.15 delta 2 = 0.15 max = 0.2
t = 1 delta 0 = 0.08 delta 1 = 0.06 delta 2 = 0.06 max = 0.08
t = 1 delta 0 = 0.04 delta 1 = 0.03 delta 2 = 0.03 max = 0.04
t = 2 delta 0 = 0.01 delta 1 = 0.012 delta 2 = 0.004 max = 0.012
t = 2 delta 0 = 0.016 delta 1 = 0.0064 delta 2 = 0.0024 max = 0.016
t = 2 delta 0 = 0.01 delta 1 = 0.0024 delta 2 = 0.002 max = 0.01
t = 3 delta 0 = 0.0006 delta 1 = 0.0024 delta 2 = 0.001 max = 0.0024
t = 3 delta 0 = 0.00096 delta 1 = 0.00128 delta 2 = 0.0006 max = 0.00128
t = 3 delta 0 = 0.0006 delta 1 = 0.00048 delta 2 = 0.0005 max = 0.0006
t = 4 delta 0 = 0.00012 delta 1 = 0.000192 delta 2 = 6e-05 max = 0.000192
t = 4 delta 0 = 0.000192 delta 1 = 0.0001024 delta 2 = 3.6e-05 max = 0.000192
t = 4 delta 0 = 0.00012 delta 1 = 3.84e-05 delta 2 = 3e-05 max = 0.00012
t = 5 delta 0 = 9.6e-06 delta 1 = 2.88e-05 delta 2 = 1.2e-05 max = 2.88e-05
t = 5 delta 0 = 1.536e-05 delta 1 = 1.536e-05 delta 2 = 7.2e-06 max = 1.536e-05
t = 5 delta 0 = 9.6e-06 delta 1 = 5.76e-06 delta 2 = 6e-06 max = 9.6e-06
t = 6 delta 0 = 1.44e-06 delta 1 = 2.304e-06 delta 2 = 9.6e-07 max = 2.304e-06
t = 6 delta 0 = 2.304e-06 delta 1 = 1.2288e-06 delta 2 = 5.76e-07 max = 2.304e-06
t = 6 delta 0 = 1.44e-06 delta 1 = 4.608e-07 delta 2 = 4.8e-07 max = 1.44e-06
t = 7 delta 0 = 1.152e-07 delta 1 = 3.456e-07 delta 2 = 1.44e-07 max = 3.456e-07
t = 7 delta 0 = 1.8432e-07 delta 1 = 1.8432e-07 delta 2 = 8.64e-08 max = 1.8432e-07
t = 7 delta 0 = 1.152e-07 delta 1 = 6.912e-08 delta 2 = 7.2e-08 max = 1.152e-07
t = 8 delta 0 = 1.728e-08 delta 1 = 2.7648e-08 delta 2 = 1.152e-08 max = 2.7648e-08
t = 8 delta 0 = 2.7648e-08 delta 1 = 1.47456e-08 delta 2 = 6.912e-09 max = 2.7648e-08
t = 8 delta 0 = 1.728e-08 delta 1 = 5.5296e-09 delta 2 = 5.76e-09 max = 1.728e-08
t = 9 delta 0 = 1.3824e-09 delta 1 = 4.1472e-09 delta 2 = 1.728e-09 max = 4.1472e-09
t = 9 delta 0 = 2.21184e-09 delta 1 = 2.21184e-09 delta 2 = 1.0368e-09 max = 2.21184e-09
t = 9 delta 0 = 1.3824e-09 delta 1 = 8.2944e-10 delta 2 = 8.64e-10 max = 1.3824e-09
t = 10 delta 0 = 2.0736e-10 delta 1 = 3.31776e-10 delta 2 = 1.3824e-10 max = 3.31776e-10
t = 10 delta 0 = 3.31776e-10 delta 1 = 1.769472e-10 delta 2 = 8.2944e-11 max = 3.31776e-10
t = 10 delta 0 = 2.0736e-10 delta 1 = 6.63552e-11 delta 2 = 6.912e-11 max = 2.0736e-10

optimum path = [0 1 0 1 0 1 0 1 1 0]

s1
s2
s3

Applications of Problem 2 – What is the most likely series
of states to have produced a pattern?

Identifying ORFs, intergenic regions, CpG islands etc. by base composition

Multiple sequence alignments

Matching to protein profiles and domains

ORFCpG islands

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

