Biochemistry 324 Bioinformatics

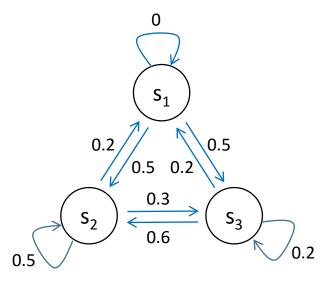
Hidden Markov Models (HMMs)

Find the hidden tiger in the image...

https://www.moillusions.com/hidden-tiger-illusion/

Markov Chain

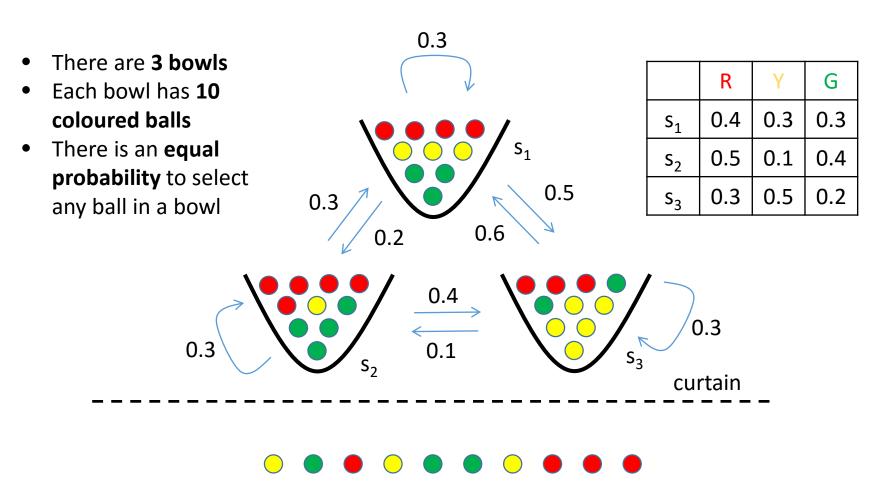
- A Markov chain a system represented by **N states**, **s**₁,**s**₂,**s**₃,...,**s**_N which **can be seen**
- There are discrete times t=0, t=1, ... during which the system is in state s₁,s₂,...
- At time step t the system is in state q_t where $q_t \in \{s_1, s_2, s_3, ..., s_N\}$
- The system can make a transition between states at consecutive time points with certain probabilities, i.e. $p(q_{t+1}=s_1|q_t=s_2) = 0.5$. [... $q_{t+1}=s_1$ given that $q_t=s_2$...]
- Moving from state q_t to state q_{t+1} depends only on q_t, not q_{t-1}, q_{t-2} etc.
- This is known as a first order Markov chain
- In the general case, the transition probability a_{ij}=p(q_{t+1}=s_j|q_t=s_i) going from s_i to s_i
- The chance to **start** with s_1, s_2 or s_3 is $\pi = \{0.5, 0.3, 0.2\}$



	End state				
		s ₁	s ₂	S ₃	
state	s ₁	0	0.5	0.5	
Start state	s ₂	0.2	0.5	0.3	
	S ₃	0.2	0.6	0.2	

Thus, the chance of observing the sequence $s_1, s_3, s_3, s_2, s_1, s_3 = 0.5 \times 0.5 \times 0.2 \times 0.6 \times 0.2 \times 0.5 = 0.003$

Hidden Markov Model (HMM)



- You only observe the series of coloured balls on this side of the curtain
- Did the person choosing the balls, **pick them** from the 3 bowl **according to the transition probabilities**?

Formal description of a HMM

- T = length of observation sequence
- N = number of states (bowls)
- M = number of observation symbols (coloured balls)
- $Q = {q_1, q_2, ..., q_N}$ series of states
- $V = \{v_1, v_2, ..., v_N\}$ set of possible observation symbols

A HMM λ is described by

A = {a_{ij}} where a_{ij} = p(q_j at t+1|q_i at t) the state transition probabilities B = {b_j(k)} where b_j(k) = p(v_k at t|q_i at t) $\pi = {\pi_i}$ where $\pi_i = p(q_i \text{ at t=1})$ initial state distribution The model λ is written as $\lambda = (A, B, \pi)$

An observation sequence $O = O_1, O_2, ..., O_N$ is generated as follows:

- 1. Choose an initial state q_1 according to the initial state distribution π
- 2. Set t = 1
- 3. Choose O_t according to $b_{1t}(k)$, the symbol probability distribution of state q_1
- 4. Choose a state q_2 according to $\{a_{ij}\}$ for
- 5. Set t = t+1
- 6. Return to 3 if t < T

Demystified These are the b_i(k) 0.3 R G These are the a_{ii} 0.3 0.3 0.4 S_1 **S**₁ 0.5 0.1 0.4 S_2 0.5 0.2 0.3 0.5 S₃ 0.3 0.6 0.2 0.4 0.3 0.1 0.3 S₃ S_2 curtain \bigcirc This is O

If we could start with any of the 3 bowls, then $\pi = \{0.33, 0.33, 0.33\}$

The 3 problems to solve for a HMM

Is this a TF binding site?

Problem 1 – What is the chance that a pattern was generated by a HMM Given observation sequence $O = O_1, O_2, ..., O_N$ and the model $\lambda = (A, B, \pi)$ How do we compute $p(O|\lambda)$, i.e., how do we compute the probability of the observation sequence O given the model λ ? Forward/backward algorithm

Problem 2 – What is the most likely series of states to have produced a pattern Given observation sequence $O = O_1, O_2, ..., O_N$ and the model $\lambda = (A, B, \pi)$ How do we compute a series of states $Q = \{q_1, q_2, ..., q_N\}$ that is likely to have produced O? Viterbi algorithm Is this a non-coding region?

Problem 3 – *Can the HMM parameters be adjusted to better describe a pattern* How can we adjust the model parameters $\lambda = (A, B, \pi)$ to maximize $p(O|\lambda)$?

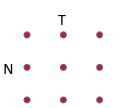
Baum-Welch algorithm

What HMM λ best represents this?

Problem 1 – What is the chance that a pattern was generated by a HMM

We are given an output series $O = \{O_1, O_2, ..., O_T\}$ representing T observations This must have been produced by T states (not necessarily different states) Say we observe 3 balls R, Y and G (T=3) Let us *assume*, also this was produced by the state series $Q = \{s_1, s_2, s_3\}$ The probability of this series is $A = \pi_1^* a_{12}^* a_{23} = 0.33^* 0.2^* 0.4$ The probability of the R, Y and G output series from this *specific* state series is $B = b_1(1)*b_2(2)*b_3(3) = 0.4*0.1*0.2$ (see $b_i(k)$ table on previous slide) Thus the probability of getting the observed series O from A and B, $p(O|A,B) = \pi_1^* a_{12}^* a_{23}^* b_1(1)^* b_2(2)^* b_3(3) = 0.33^* 0.2^* 0.4^* 0.4^* 0.1^* 0.2 = 0.0002$ But this is only one possible path. We can also choose A = $\pi_2^* a_{22}^* a_{21}$ $p(O|A,B) = \pi_2 * a_{22} * a_{21} * b_2(1) * b_2(2) * b_1(3) = 0.33 * 0.3 * 0.3 * 0.5 * 0.1 * 0.3 = 0.0004$ The probability of O = R, Y and G is the sum of all the independent, individual paths (remember independent, mutually exclusive probabilities add: a chance that you flip a head OR a tail is 0.5+0.5 = 1)

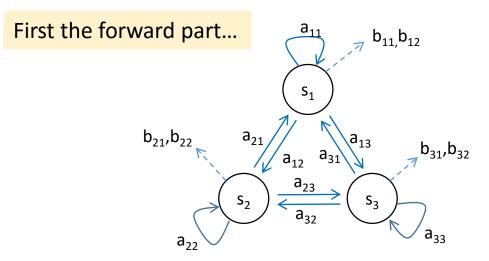
But there are 3*3*3 = 27 possible paths!



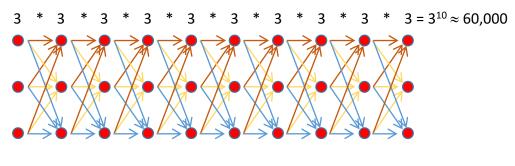
 $O(N^{T})$ for 20 states with 50 samples (50 residue peptide): $20^{50} = 10^{34}$ years to calculate at 1 calculation/nanosecond

We need an algorithm!

The Forward/backward algorithm



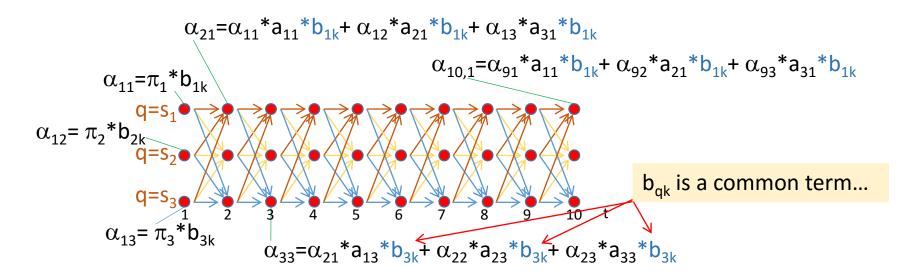
Imagine the are **three states** s1, s2 and s₃ Each state has 2 outputs \mathbf{b}_{11} , \mathbf{b}_{12} , \mathbf{b}_{21} , \mathbf{b}_{22} , \mathbf{b}_{31} and \mathbf{b}_{32} If we have a pattern of 10 symbols (T = 10) There are thus **3**¹⁰ (~60,000) paths to produce 10 symbols



What if we store the answer at each t?

The Forward algorithm – implementation

• Lets write α , the sum of the probabilities to produce output b_{qk} at state q_t at time t as α_{tq}



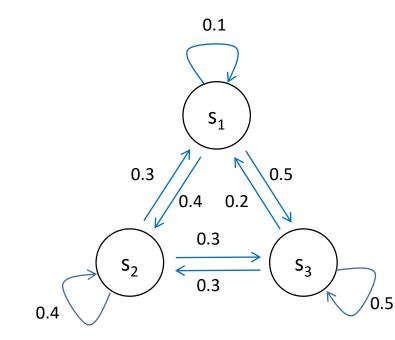
- So, at any time t+1, the probability to arrive at a state q_{t+1} is the sum of the probabilities to arrive from states q_t
 - $\alpha_{t+1}(j) = \left[\sum_{i=1}^{T} \alpha_t(i) a_{ij}\right] b_{j(k)}$

Thus, starting at t=1, calculate α_t(i) for each state, remember it, and use it to calculate each α_{t+1}(i) at t=t+1, etc.

- Thus, for this example you will perform 3²*10 calculations, i.e. **O(N²T)**
- You finally add the $\alpha_{10,q}$ values to get the overall probability to observe pattern O

eqn 1

An example HMM for the Forward algorithm



 $\mathsf{a}_{\mathsf{i}\mathsf{j}}$ 2 1 3 1 0.1 0.4 0.5 2 0.3 0.4 0.3 3 0.2 0.3 0.5

b _j (k)				
	1	2		
1	0.5	0.5		
2	0.5	0.5		
3	0.5	0.5		

O={0,0,0,0,0,1,1,1,1,1}

Forward algorithm code

```
pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.5,0.5],[0.5,0.5]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]
```

```
def forward(pi_matrix,a_matrix,b_matrix,pattern_list):
    number_of_states = len(a_matrix)
    length = len(pattern_list)
    alpha_matrix = np.zeros(number_of_states,dtype = float)
    temp_alpha_matrix = np.zeros(number_of_states,dtype = float)
    alpha_matrix = np.copy(pi_matrix)
    alpha results = np.zeros((number of states, length), dtype = float)
    for i in range(length):
        for j in range(number of states):
            if(i==0):
                temp_alpha_matrix[j] =
                alpha_matrix[j]*b_matrix[j,pattern_list[i]]
            else:
                temp_alpha_matrix[j] =
                np.dot(alpha_matrix,a_matrix[:,j])*
                b_matrix[j,pattern_list[i]]
            alpha_results[j,i] = temp_alpha_matrix[j]
        alpha_matrix = np.copy(temp_alpha_matrix)
    return(np.sum(alpha matrix))
```

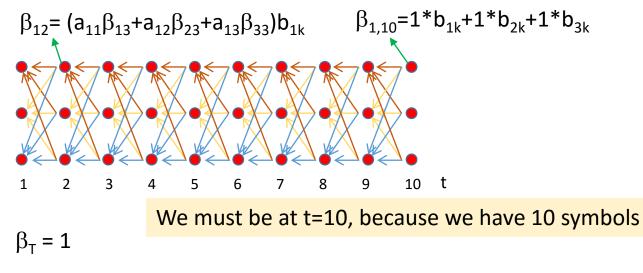
Forward algorithm code output

alpha	0	0	=	0.2
alpha	1	0	=	0.15
alpha	2	0	=	0.15
alpha	0	1	=	0.0475
alpha	1	1	=	0.0925
alpha	2	1	=	0.11
alpha	0	2	=	0.02725
alpha	1	2	=	0.0445
alpha	2	2	=	0.05325
alpha	0	3	=	0.0133625
alpha	1	3	=	0.0223375
alpha	2	3	=	0.0268
alpha	0	4	=	0.00669875
alpha	1	4	=	0.01116
alpha	2	4	=	0.01339125
alpha	0	5	=	0.0033480625
alpha	1	5	=	0.0055804375
alpha	2	5	=	0.0066965
alpha	0	б	=	0.00167411875
alpha	1	б	=	0.002790175
alpha	2	б	=	0.00334820625
alpha	0	7	=	0.0008370528125
alpha	1	7	=	0.0013950896875
alpha	2	7	=	0.0016741075
alpha	0	8	=	0.00041852684375
alpha	1	8	=	0.000697544625
alpha	2	8	=	0.00083705353125
alpha	0	9	=	0.000209263389062
alpha	1	9	=	0.000348772323437
alpha		9	=	0.0004185267875
Probability =			: y =	0.0009765625

- Danger of **underflow**
- Add logarithms

The Backward algorithm

The Backward algorithm is the **reverse of the Forward algorithm** Use either, not both!



$$\beta_i$$
(t-1) = $\left(\sum_{j=1}^N a_{ij}\beta_j(t)\right)b_j(k)$

O(N²T)

Calculate β_i (t-1) for every t from t=T to t=1 Finally max $\left[\left(\sum_{j=1}^N \pi_i \beta_j(t) \right) b_j(k) \right]$ is calculated

Accounts for the starting π -distribution

Backwards algorithm code

```
pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.5,0.5],[0.5,0.5]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]
```

```
def backward(pi_matrix,a_matrix,b_matrix,pattern_list):
    number_of_states = len(a_matrix)
    length = len(pattern_list)
    beta_matrix = np.ones((number_of_states,1),dtype=float)
    temp_beta_matrix = np.zeros((number_of_states,1),dtype = float)
    beta_results = np.ones((number_of_states,length),dtype = float)
    for i in range(length-1,-1,-1): #N-1 to 0, backwards
        for j in range(number_of_states):
            temp_beta_matrix[j,0] =
            np.dot(a_matrix[j,:],beta_matrix[:,0])*
            b_matrix[j,pattern_list[i]]
            beta_results[j,i] = temp_beta_matrix[j,0]
        beta_matrix = np.copy(temp_beta_matrix)
    return(np.dot(pi_matrix,beta_matrix))
```

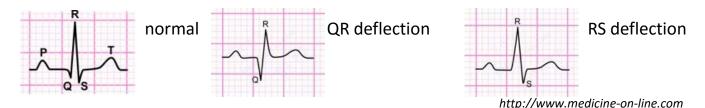
Backward algorithm code output

beta	0	0	=	0.0009765625	
beta	1	0	=	0.0009765625	
beta	2	0	=	0.0009765625	
beta	0	1	=	0.001953125	
beta	1	1	=	0.001953125	
beta	2	1	=	0.001953125	
beta	0	2	=	0.00390625	
beta	1	2	=	0.00390625	
beta	2	2	=	0.00390625	
beta	0	3	=	0.0078125	
beta	1	3	=	0.0078125	
beta	2	3	=	0.0078125	
beta	0	4	=	0.015625	
beta	1	4	=	0.015625	
beta	2	4	=	0.015625	
beta	0	5	=	0.03125	
beta	1	5	=	0.03125	
beta	2	5	=	0.03125	
beta	0	б	=	0.0625	
beta	1	б	=	0.0625	
beta	2	б	=	0.0625	
beta	0	7	=	0.125	
beta	1	7	=	0.125	
beta	2	7	=	0.125	
beta	0	8	=	0.25	
beta	1	8	=	0.25 Same p	
beta	2	8	=	0.25	
beta	0	9	=	0.5	
beta	1	9	=	0.5	
beta	2	9	=	0.5	
Probability = 0.0009765625					

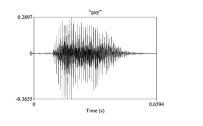
Applications of Problem 1 – What is the chance that a pattern was generated by a HMM

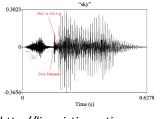
• Compare a sequence to a trained HMM for functional sequences such as TATA boxes, transcription factor binding sites, replication origins, centromeres, etc.

• A normal EKG is composed of three wave segments: the P, the QRS complex and the T



- The measured EKG can be compared to normal and abnormal HMM to detect cardiac problems
- Word and image recognition

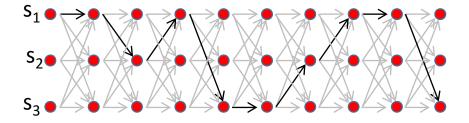




http://linguisticmystic.com

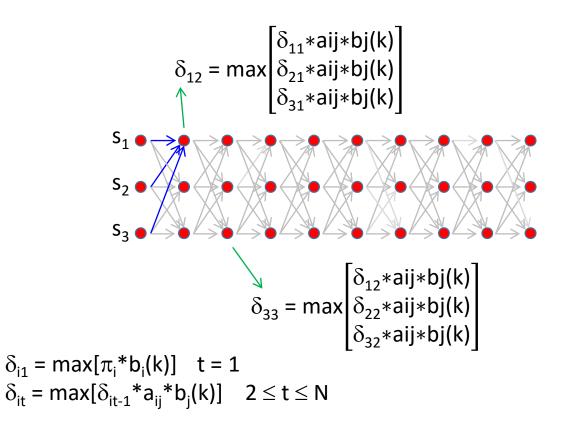
Excuse me while I kiss the sky *vs* Excuse me while I kiss this guy *Jimmy Hendrix – Purple Haze* Problem 2 – What is the most likely series of states to have produced a pattern

Given observation sequence $O = O_1, O_2, ..., O_N$ and the model $\lambda = (A, B, \pi)$ How do we compute a series of states $Q = \{q_1, q_2, ..., q_N\}$ that is likely to have produced O?



N^T possible paths (light grey arrows), i.e. $O(N^T)$ – unfeasible calculation The Viterbi algorithm finds a path that results in the largest cumulative probability of the output pattern O (illustrated by the black arrows) Viterbi is related to the Forward algorithm, but records the maximum probability for the transitions to a state q_i, as opposed to the sum of all probabilities for the q_{i-1} to q_i transition Viterbi algorithm complexity: $O(N^2T)$ Dynamic programming type algorithm

Viterbi algorithm



For the maximum δ_{it} for every state *i* at every time *t*, record the δ_{it-1} that resulted in the current max δ_{it} in matrix Ψ_t

At t = T, choose the maximum δ_{it} , and trace the path that resulted in that maximum using the Ψ_t matrix back to t=1

Viterbi algorithm code

```
pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.2,0.2],[0.1,0.1]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]
```

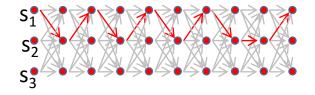
Note the emission probability of state 3 is low

```
def viterbi(pi matrix, a matrix, b matrix, pattern list):
      number_of_states = len(a_matrix)
      length = len(pattern_list)
      delta matrix = np.zeros((number of states, length), dtype = float)
      temp delta matrix = np.zeros(number of states, dtype = float)
      phi matrix = np.zeros((number of states, length), dtype=int)
      path_matrix = np.zeros((length), dtype=int)
      for position_in_pattern in range(length):
           for current state in range(number of states):
               for previous_state in range(number_of_states):
                   if(position_in_pattern == 0): #handle t=1 use pi_matrix
                       temp_delta_matrix[previous_state] = pi_matrix[previous_state]*
                    b_matrix[current_state,pattern_list[position_in_pattern]]
                   else:
                       temp_delta_matrix[previous_state] = delta_matrix[previous_state,
                    position in pattern-1]*a matrix[previous state,current state]*
                    b_matrix[current_state,pattern_list[position_in_pattern]]
               delta_matrix[current_state,position_in_pattern] =
               np.max(temp delta matrix)
              phi_matrix[current_state,position_in_pattern] =
               np.argmax(temp delta matrix)
      path matrix[length-1]=np.argmax(delta matrix[:,length-1])
      for position in range(length-1,0,-1):
          path matrix[position-1] = phi matrix[path matrix[position],position]
      return(path_matrix)
```

Viterbi algorithm output

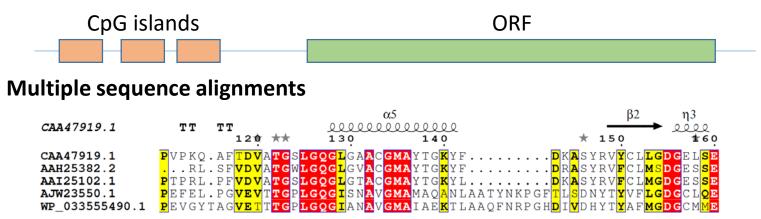
```
t = 1 delta 0 = 0.2
                     delta 1 = 0.15
                                       delta 2 = 0.15
                                                        max = 0.2
t = 1 delta 0 = 0.08
                    delta 1 = 0.06 delta 2 = 0.06
                                                        max = 0.08
t = 1 delta 0 = 0.04
                    delta 1 = 0.03 delta 2 = 0.03 max = 0.04
t = 2 delta 0 = 0.01 delta 1 = 0.012 delta 2 = 0.004 max = 0.012
t = 2 delta 0 = 0.016 delta 1 = 0.0064 delta 2 = 0.0024 max = 0.016
t = 2 delta 0 = 0.01 delta 1 = 0.0024 delta 2 = 0.002 max = 0.01
t = 3 delta 0 = 0.0006 delta 1 = 0.0024 delta 2 = 0.001 max = 0.0024
t = 3 delta 0 = 0.00096 delta 1 = 0.00128 delta 2 = 0.0006 max = 0.00128
t = 3 delta 0 = 0.0006 delta 1 = 0.00048 delta 2 = 0.0005 max = 0.0006
t = 4 \text{ delta } 0 = 0.00012 \text{ delta } 1 = 0.000192
                                             delta 2 = 6e-05 max = 0.000192
t = 4 delta 0 = 0.000192
                            delta 1 = 0.0001024
                                                   delta 2 = 3.6e-05 max = 0.000192
t = 4 delta 0 = 0.00012 delta 1 = 3.84e-05 delta 2 = 3e-05 max = 0.00012
t = 5 delta 0 = 9.6e-06 delta 1 = 2.88e-05 delta 2 = 1.2e-05 max = 2.88e-05
t = 5 delta 0 = 1.536e-05 delta 1 = 1.536e-05
                                                   delta 2 = 7.2e-06 max = 1.536e-05
t = 5 delta 0 = 9.6e-06 delta 1 = 5.76e-06
                                           delta 2 = 6e-06 max = 9.6e-06
t = 6 delta 0 = 1.44e-06
                                                   delta 2 = 9.6e-07 \text{ max} = 2.304e-06
                          delta 1 = 2.304e-06
t = 6 delta 0 = 2.304e-06
                         delta 1 = 1.2288e-06 delta 2 = 5.76e-07
                                                                         max = 2.304e - 06
t = 6 \text{ delta } 0 = 1.44e-06 delta 1 = 4.608e-07 delta 2 = 4.8e-07 \text{ max} = 1.44e-06
t = 7 delta 0 = 1.152e-07
                           delta 1 = 3.456e-07 delta 2 = 1.44e-07
                                                                        max = 3.456e - 07
t = 7 delta 0 = 1.8432e-07 delta 1 = 1.8432e-07
                                                   delta 2 = 8.64e-08
                                                                        max = 1.8432e-07
t = 7 delta 0 = 1.152e-07 delta 1 = 6.912e-08
                                                   delta 2 = 7.2e-08 max = 1.152e-07
t = 8 delta 0 = 1.728e-08
                           delta 1 = 2.7648e-08
                                                   delta 2 = 1.152e-08 max = 2.7648e-08
t = 8 delta 0 = 2.7648e-08 delta 1 = 1.47456e-08 delta 2 = 6.912e-09
                                                                         max = 2.7648e - 08
t = 8 delta 0 = 1.728e-08
                           delta 1 = 5.5296e-09
                                                   delta 2 = 5.76e-09 max = 1.728e-08
t = 9 \text{ delta } 0 = 1.3824 \text{e} - 09
                           delta 1 = 4.1472e-09
                                                   delta 2 = 1.728e-09
                                                                        max = 4.1472e-09
t = 9 delta 0 = 2.21184e-09 delta 1 = 2.21184e-09 delta 2 = 1.0368e-09
                                                                         max = 2.21184e-09
t = 9 delta 0 = 1.3824e-09
                           delta 1 = 8.2944e-10
                                                   delta 2 = 8.64e-10
                                                                         max = 1.3824e - 09
           delta 0 = 2.0736e-10 delta 1 = 3.31776e-10 delta 2 = 1.3824e-10
t = 10
                                                                               max = 3.31776e - 10
t = 10
         delta 0 = 3.31776e-10 delta 1 = 1.769472e-10 delta 2 = 8.2944e-11 max = 3.31776e-10
       delta 0 = 2.0736e-10 delta 1 = 6.63552e-11 delta 2 = 6.912e-11 max = 2.0736e-10
t = 10
```

optimum path = [0 1 0 1 0 1 0 1 1 0]



Applications of Problem 2 – What is the most likely series of states to have produced a pattern?

Identifying ORFs, intergenic regions, CpG islands etc. by base composition



Matching to protein profiles and domains

