
Hidden Markov Models (HMMs)

Find the hidden tiger in the image…
https://www.moillusions.com/hidden-tiger-illusion/

Biochemistry 324
Bioinformatics



Markov Chain
• A Markov chain a system represented by N states, s1,s2,s3,…,sN which can be seen
• There are discrete times t=0, t=1, … during which the system is in state s1,s2,…
• At time step t the system is in state qt where qt∈{s1,s2,s3,…,sN}
• The system can make a transition between states at consecutive time points with 

certain probabilities, i.e. p(qt+1=s1|qt=s2) = 0.5. 
• Moving from state qt to state qt+1 depends only on qt, not qt-1, qt-2 etc.
• This is known as a first order Markov chain
• In the general case, the transition probability aij=p(qt+1=sj|qt=si) going from si to sj
• The chance to start with s1,s2 or s3 is π = {0.5,0.3,0.2}
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Thus, the chance of observing the sequence s1,s3,s3,s2,s1,s3 = 
0.5×0.5×0.2×0.6×0.2×0.5=0.003

[…qt+1=s1 given that qt=s2…]
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Hidden Markov Model (HMM)

• There are 3 bowls
• Each bowl has 10 

coloured balls
• There is an equal 

probability to select 
any ball in a bowl

R Y G

s1 0.4 0.3 0.3

s2 0.5 0.1 0.4

s3 0.3 0.5 0.2

• You only observe the series of coloured balls on this side of the curtain
• Did the person choosing the balls, pick them from the 3 bowl according to the 

transition probabilities?



Formal description of a HMM

T = length of observation sequence
N = number of states (bowls)
M = number of observation symbols (coloured balls)
Q = {q1,q2,…,qN} series of states
V = {v1,v2,…,vN} set of possible observation symbols

A HMM λ is described by
A = {aij} where aij = p(qj at t+1|qi at t) the state transition probabilities
B = {bj(k)} where bj(k) = p(vk at t|qi at t)
π = {πi} where πI = p(qi at t=1) initial state distribution
The model λ is written as λ = (A,B,π) 

An observation sequence O = O1,O2,…,ON is generated as follows:
1. Choose an initial state q1 according to the initial state distribution π
2. Set t = 1
3. Choose Ot according to b1t(k), the symbol probability distribution of state q1
4. Choose a state q2 according to {aij} for 
5. Set t = t+1
6. Return to 3 if t < T 
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R Y G

s1 0.4 0.3 0.3

s2 0.5 0.1 0.4

s3 0.3 0.5 0.2

These are the aij

These are the bj(k)

This is O

If we could start with any of the 3 bowls, then π = {0.33,0.33,0.33}

Demystified



The 3 problems to solve for a HMM

Problem 1 – What is the chance that a pattern was generated by a HMM
Given observation sequence O = O1,O2,…,ON and the model λ = (A,B,π)
How do we compute p(O|λ), i.e., how do we compute the probability of the 
observation sequence O given the model λ?

Problem 2 – What is the most likely series of states to have produced a pattern
Given observation sequence O = O1,O2,…,ON and the model λ = (A,B,π)
How do we compute a series of states Q = {q1,q2,…,qN} that is likely to have 
produced O?

Problem 3 – Can the HMM parameters be adjusted to better describe a pattern
How can we adjust the model parameters λ = (A,B,π)
to maximize p(O|λ)?

Forward/backward algorithm

Viterbi algorithm

Baum-Welch algorithm

Is this a TF binding site?

Is this a non-coding region?

What HMM λ best represents this?



Problem 1 – What is the chance that a pattern 
was generated by a HMM

We are given an output series O = {O1,O2,…,OT} representing T observations
This must have been produced by T states (not necessarily different states)
Say we observe 3 balls R, Y and G (T=3)
Let us assume, also this was produced by the state series Q ={s1,s2,s3}
The probability of this series is A = π1*a12*a23 = 0.33*0.2*0.4
The probability of the R, Y and G output series from this specific state series is
B = b1(1)*b2(2)*b3(3) = 0.4*0.1*0.2 (see bj(k) table on previous slide)
Thus the probability of getting the observed series O from A and B,
p(O|A,B) = π1*a12*a23*b1(1)*b2(2)*b3(3) = 0.33*0.2*0.4*0.4*0.1*0.2 = 0.0002
But this is only one possible path. We can also choose A = π2*a22*a21
p(O|A,B) = π2*a22*a21 *b2(1)*b2(2)*b1(3) = 0.33* 0.3*0.3*0.5*0.1*0.3 = 0.0004
The probability of O = R, Y and G is the sum of all the independent, individual paths
(remember independent, mutually exclusive probabilities add: a chance that you flip 
a head OR a tail is 0.5+0.5 = 1)

But there are 3*3*3 = 27 possible paths!

Ο(NT) for 20 states with 50 samples (50 residue peptide): 2050 = 1034 years to 
calculate at 1 calculation/nanosecond 

N

T

We need an algorithm!



*********3 3 3 3 3 3 3 3 3 3 = 310 ≈ 60,000
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Imagine the are three states s1, s2 and s3
Each state has 2 outputs b11, b12, b21, b22, b31 and b32
If we have a pattern of 10 symbols (T = 10)
There are thus 310 (~60,000) paths to produce 10 symbols

What if we store the answer at each t?

The Forward/backward algorithm
First the forward part…



α11=π1*b1k

α12= π2*b2k

α21=α11*a11*b1k+ α12*a21*b1k+ α13*a31*b1k

α33=α21*a13*b3k+ α22*a23*b3k+ α23*a33*b3k

α10,1=α91*a11*b1k+ α92*a21*b1k+ α93*a31*b1k

α13= π3*b3k

• Lets write α, the sum of the probabilities to produce output bqk at state qt
at time t as αtq

q=s1

q=s2

q=s3
1 2 3 4 5 6 7 8 9 10 t

• So, at any time t+1, the probability to arrive at a state qt+1 is the sum of the 
probabilities to arrive from states qt

• αt+1(j) = ∑𝑖𝑖=1𝑇𝑇 α𝑡𝑡 𝑖𝑖 𝑎𝑎𝑖𝑖𝑖𝑖 𝑏𝑏𝑖𝑖 𝑘𝑘 eqn 1
• Thus, starting at t=1, calculate αt(i) for each state, remember it, and use it to 

calculate each αt+1(i) at t=t+1, etc.
• Thus, for this example you will perform 32*10 calculations, i.e.  Ο(N2T)
• You finally add the α10,q values to get the overall probability to observe pattern O

bqk is a common term…

The Forward algorithm – implementation



s1

s2 s3

0.1

0.4
0.5

0.5
0.3

0.2

0.4

0.3

0.3

1 2 3

1 0.1 0.4 0.5

2 0.3 0.4 0.3

3 0.2 0.3 0.5

1 2

1 0.5 0.5

2 0.5 0.5

3 0.5 0.5

aij

bj(k)

An example HMM for the Forward algorithm

O={0,0,0,0,0,1,1,1,1,1}



def forward(pi_matrix,a_matrix,b_matrix,pattern_list):
number_of_states = len(a_matrix)
length = len(pattern_list)
alpha_matrix = np.zeros(number_of_states,dtype = float)
temp_alpha_matrix = np.zeros(number_of_states,dtype = float)
alpha_matrix = np.copy(pi_matrix)
alpha_results = np.zeros((number_of_states,length),dtype = float)
for i in range(length):

for j in range(number_of_states):
if(i==0):

temp_alpha_matrix[j] = 
alpha_matrix[j]*b_matrix[j,pattern_list[i]]

else:
temp_alpha_matrix[j] = 
np.dot(alpha_matrix,a_matrix[:,j])*
b_matrix[j,pattern_list[i]]

alpha_results[j,i] = temp_alpha_matrix[j]
alpha_matrix = np.copy(temp_alpha_matrix)

return(np.sum(alpha_matrix))

Forward algorithm code
pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.5,0.5],[0.5,0.5]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]



Forward algorithm code output
alpha 0 0  =  0.2
alpha 1 0  =  0.15
alpha 2 0  =  0.15
alpha 0 1  =  0.0475
alpha 1 1  =  0.0925
alpha 2 1  =  0.11
alpha 0 2  =  0.02725
alpha 1 2  =  0.0445
alpha 2 2  =  0.05325
alpha 0 3  =  0.0133625
alpha 1 3  =  0.0223375
alpha 2 3  =  0.0268
alpha 0 4  =  0.00669875
alpha 1 4  =  0.01116
alpha 2 4  =  0.01339125
alpha 0 5  =  0.0033480625
alpha 1 5  =  0.0055804375
alpha 2 5  =  0.0066965
alpha 0 6  =  0.00167411875
alpha 1 6  =  0.002790175
alpha 2 6  =  0.00334820625
alpha 0 7  =  0.0008370528125
alpha 1 7  =  0.0013950896875
alpha 2 7  =  0.0016741075
alpha 0 8  =  0.00041852684375
alpha 1 8  =  0.000697544625
alpha 2 8  =  0.00083705353125
alpha 0 9  =  0.000209263389062
alpha 1 9  =  0.000348772323437
alpha 2 9  =  0.0004185267875
Probability =  0.0009765625

• Danger of underflow
• Add logarithms



The Backward algorithm

1 2 3 4 5 6 7 8 9 10 t

βT = 1

βi(t-1) = ∑𝑗𝑗=1𝑁𝑁 𝑎𝑎𝑖𝑖𝑖𝑖β𝑖𝑖 𝑡𝑡 𝑏𝑏𝑖𝑖(𝑘𝑘)

Ο(N2T)

Calculate βi(t-1) for every t from t=T to t=1
Finally max ∑𝑗𝑗=1𝑁𝑁 π𝑖𝑖β𝑖𝑖 𝑡𝑡 𝑏𝑏𝑖𝑖 𝑘𝑘 is calculated 

The Backward algorithm is the reverse of the Forward algorithm
Use either, not both!

We must be at t=10, because we have 10 symbols

β1,10=1*b1k+1*b2k+1*b3k

Accounts for the starting π-distribution

β12= (a11β13+a12β23+a13β33)b1k



Backwards algorithm code

def backward(pi_matrix,a_matrix,b_matrix,pattern_list):
number_of_states = len(a_matrix)
length = len(pattern_list)
beta_matrix = np.ones((number_of_states,1),dtype=float)
temp_beta_matrix = np.zeros((number_of_states,1),dtype = float)
beta_results = np.ones((number_of_states,length),dtype = float)
for i in range(length-1,-1,-1): #N-1 to 0, backwards

for j in range(number_of_states):
temp_beta_matrix[j,0] = 
np.dot(a_matrix[j,:],beta_matrix[:,0])*
b_matrix[j,pattern_list[i]]
beta_results[j,i] = temp_beta_matrix[j,0]

beta_matrix = np.copy(temp_beta_matrix)
return(np.dot(pi_matrix,beta_matrix))

pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.5,0.5],[0.5,0.5]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]



beta 0 0 = 0.0009765625
beta 1 0 = 0.0009765625
beta 2 0 = 0.0009765625
beta 0 1 = 0.001953125
beta 1 1 = 0.001953125
beta 2 1 = 0.001953125
beta 0 2 = 0.00390625
beta 1 2 = 0.00390625
beta 2 2 = 0.00390625
beta 0 3 = 0.0078125
beta 1 3 = 0.0078125
beta 2 3 = 0.0078125
beta 0 4 = 0.015625
beta 1 4 = 0.015625
beta 2 4 = 0.015625
beta 0 5 = 0.03125
beta 1 5 = 0.03125
beta 2 5 = 0.03125
beta 0 6 = 0.0625
beta 1 6 = 0.0625
beta 2 6 = 0.0625
beta 0 7 = 0.125
beta 1 7 = 0.125
beta 2 7 = 0.125
beta 0 8 = 0.25
beta 1 8 = 0.25
beta 2 8 = 0.25
beta 0 9 = 0.5
beta 1 9 = 0.5
beta 2 9 = 0.5
Probability =  0.0009765625

Backward algorithm code output

Same p as with the Forward algorithm



Applications of Problem 1 – What is the chance 
that a pattern was generated by a HMM

• A normal EKG is composed of three wave segments: the P, the QRS 
complex and the T

normal QR deflection RS deflection

• The measured EKG can be compared to normal and abnormal HMM to 
detect cardiac problems

• Word and image recognition

http://linguisticmystic.com

http://www.medicine-on-line.com

Excuse me while I kiss the sky
vs

Excuse me while I kiss this guy
Jimmy Hendrix – Purple Haze

• Compare a sequence to a trained HMM for functional sequences such as TATA 
boxes, transcription factor binding sites, replication origins, centromeres, etc.

TF TATA ORF



Problem 2 – What is the most likely series of states 
to have produced a pattern

Given observation sequence O = O1,O2,…,ON and the model λ = (A,B,π)
How do we compute a series of states Q = {q1,q2,…,qN} that is likely to 
have produced O?

s1

s2

s3

NT possible paths (light grey arrows), i.e. Ο(NT) – unfeasible calculation
The Viterbi algorithm finds a path that results in the largest cumulative 
probability of the output pattern O (illustrated by the black arrows)
Viterbi is related to the Forward algorithm, but records the maximum 
probability for the transitions to a state qi, as opposed to the sum of all 
probabilities for the qi-1 to qi transition
Viterbi algorithm complexity: Ο(N2T) 
Dynamic programming type algorithm



Viterbi algorithm

s2

s3

s1

δi1 = max[πi*bi(k)] t = 1
δit = max[δit-1*aij*bj(k)] 2 ≤ t ≤ N

For the maximum δit for every state i at every time t, record the δit-1 that 
resulted in the current max δit in matrix Ψt

At t = T, choose the maximum δit, and trace the path that resulted in that 
maximum using the Ψt matrix back to t=1

δ12 = max
δ11∗aij∗bj(k)
δ21∗aij∗bj(k)
δ31∗aij∗bj(k)

δ33 = max
δ12∗aij∗bj(k)
δ22∗aij∗bj(k)
δ32∗aij∗bj(k)



def viterbi(pi_matrix,a_matrix,b_matrix,pattern_list):
number_of_states = len(a_matrix)
length = len(pattern_list)
delta_matrix = np.zeros((number_of_states,length),dtype = float)
temp_delta_matrix = np.zeros(number_of_states,dtype = float)
phi_matrix = np.zeros((number_of_states,length), dtype=int)
path_matrix = np.zeros((length), dtype=int)
for position_in_pattern in range(length):

for current_state in range(number_of_states):
for previous_state in range(number_of_states):

if(position_in_pattern == 0): #handle t=1 use pi_matrix
temp_delta_matrix[previous_state] = pi_matrix[previous_state]*

b_matrix[current_state,pattern_list[position_in_pattern]]
else:

temp_delta_matrix[previous_state] = delta_matrix[previous_state,
position_in_pattern-1]*a_matrix[previous_state,current_state]*
b_matrix[current_state,pattern_list[position_in_pattern]]

delta_matrix[current_state,position_in_pattern] = 
np.max(temp_delta_matrix)
phi_matrix[current_state,position_in_pattern] = 
np.argmax(temp_delta_matrix)       

path_matrix[length-1]=np.argmax(delta_matrix[:,length-1])
for position in range(length-1,0,-1):

path_matrix[position-1] = phi_matrix[path_matrix[position],position]
return(path_matrix)

Viterbi algorithm code

pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.2,0.2],[0.1,0.1]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]

Note the emission probability of state 3 is low



Viterbi algorithm output
t = 1 delta 0 = 0.2 delta 1 = 0.15 delta 2 = 0.15 max = 0.2
t = 1 delta 0 = 0.08 delta 1 = 0.06 delta 2 = 0.06 max = 0.08
t = 1 delta 0 = 0.04 delta 1 = 0.03 delta 2 = 0.03 max = 0.04
t = 2 delta 0 = 0.01 delta 1 = 0.012 delta 2 = 0.004 max = 0.012
t = 2 delta 0 = 0.016 delta 1 = 0.0064 delta 2 = 0.0024 max = 0.016
t = 2 delta 0 = 0.01 delta 1 = 0.0024 delta 2 = 0.002 max = 0.01
t = 3 delta 0 = 0.0006 delta 1 = 0.0024 delta 2 = 0.001 max = 0.0024
t = 3 delta 0 = 0.00096 delta 1 = 0.00128 delta 2 = 0.0006 max = 0.00128
t = 3 delta 0 = 0.0006 delta 1 = 0.00048 delta 2 = 0.0005 max = 0.0006
t = 4 delta 0 = 0.00012 delta 1 = 0.000192 delta 2 = 6e-05 max = 0.000192
t = 4 delta 0 = 0.000192 delta 1 = 0.0001024 delta 2 = 3.6e-05 max = 0.000192
t = 4 delta 0 = 0.00012 delta 1 = 3.84e-05 delta 2 = 3e-05 max = 0.00012
t = 5 delta 0 = 9.6e-06 delta 1 = 2.88e-05 delta 2 = 1.2e-05 max = 2.88e-05
t = 5 delta 0 = 1.536e-05 delta 1 = 1.536e-05 delta 2 = 7.2e-06 max = 1.536e-05
t = 5 delta 0 = 9.6e-06 delta 1 = 5.76e-06 delta 2 = 6e-06 max = 9.6e-06
t = 6 delta 0 = 1.44e-06 delta 1 = 2.304e-06 delta 2 = 9.6e-07 max = 2.304e-06
t = 6 delta 0 = 2.304e-06 delta 1 = 1.2288e-06 delta 2 = 5.76e-07 max = 2.304e-06
t = 6 delta 0 = 1.44e-06 delta 1 = 4.608e-07 delta 2 = 4.8e-07 max = 1.44e-06
t = 7 delta 0 = 1.152e-07 delta 1 = 3.456e-07 delta 2 = 1.44e-07 max = 3.456e-07
t = 7 delta 0 = 1.8432e-07 delta 1 = 1.8432e-07 delta 2 = 8.64e-08 max = 1.8432e-07
t = 7 delta 0 = 1.152e-07 delta 1 = 6.912e-08 delta 2 = 7.2e-08 max = 1.152e-07
t = 8 delta 0 = 1.728e-08 delta 1 = 2.7648e-08 delta 2 = 1.152e-08 max = 2.7648e-08
t = 8 delta 0 = 2.7648e-08 delta 1 = 1.47456e-08 delta 2 = 6.912e-09 max = 2.7648e-08
t = 8 delta 0 = 1.728e-08 delta 1 = 5.5296e-09 delta 2 = 5.76e-09 max = 1.728e-08
t = 9 delta 0 = 1.3824e-09 delta 1 = 4.1472e-09 delta 2 = 1.728e-09 max = 4.1472e-09
t = 9 delta 0 = 2.21184e-09 delta 1 = 2.21184e-09 delta 2 = 1.0368e-09 max = 2.21184e-09
t = 9 delta 0 = 1.3824e-09 delta 1 = 8.2944e-10 delta 2 = 8.64e-10 max = 1.3824e-09
t = 10 delta 0 = 2.0736e-10 delta 1 = 3.31776e-10 delta 2 = 1.3824e-10 max = 3.31776e-10
t = 10 delta 0 = 3.31776e-10 delta 1 = 1.769472e-10 delta 2 = 8.2944e-11 max = 3.31776e-10
t = 10 delta 0 = 2.0736e-10 delta 1 = 6.63552e-11 delta 2 = 6.912e-11 max = 2.0736e-10

optimum path = [0 1 0 1 0 1 0 1 1 0]

s1
s2
s3



Applications of Problem 2 – What is the most likely series 
of states to have produced a pattern?

Identifying ORFs, intergenic regions, CpG islands etc. by base composition

Multiple sequence alignments

Matching to protein profiles and domains

ORFCpG islands
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