Biochemistry 324 Bioinformatics

Hidden Markov Models (HMMs)

Find the hidden tiger in the image...
https://www.moillusions.com/hidden-tiger-illusion/

Markov Chain

- A Markov chain a system represented by \mathbf{N} states, $\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}, \ldots, \mathbf{s}_{\mathrm{N}}$ which can be seen
- There are discrete times $\mathrm{t}=0, \mathrm{t}=1$, ... during which the system is in state $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots$
- At time step t the system is in state q_{t} where $\mathbf{q}_{\mathbf{t}} \in\left\{\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}, \ldots, \mathbf{s}_{N}\right\}$
- The system can make a transition between states at consecutive time points with certain probabilities, i.e. $\mathbf{p}\left(\mathbf{q}_{\mathbf{t + 1}}=s_{1} \mid \mathbf{q}_{\mathbf{t}}=\mathrm{s}_{\mathbf{2}}\right)=\mathbf{0 . 5}$. $\left[\ldots \mathrm{q}_{\mathrm{t}+1}=\mathrm{s}_{1}\right.$ given that $\left.\mathrm{q}_{\mathrm{t}}=\mathrm{s}_{2} \ldots\right]$
- Moving from state q_{t} to state q_{t+1} depends only on q_{t}, not q_{t-1}, q_{t-2} etc.
- This is known as a first order Markov chain
- In the general case, the transition probability $a_{i j}=p\left(q_{t+1}=s_{j} \mid q_{t}=s_{i}\right)$ going from s_{i} to s_{j}
- The chance to start with $\mathrm{s}_{1}, \mathrm{~s}_{2}$ or s_{3} is $\pi=\{0.5,0.3,0.2\}$

	End state			
		s_{1}	S_{2}	S_{3}
	S_{1}	0	0.5	0.5
	s_{2}	0.2	0.5	0.3
	S_{3}	0.2	0.6	0.2

Thus, the chance of observing the sequence $\mathrm{s}_{1}, \mathrm{~s}_{3}, \mathrm{~s}_{3}, \mathrm{~s}_{2}, \mathrm{~s}_{1}, \mathrm{~s}_{3}=$

Hidden Markov Model (HMM)

- There are $\mathbf{3}$ bowls
- Each bowl has 10 coloured balls
- There is an equal probability to select any ball in a bowl

	R	Y	G
s_{1}	0.4	0.3	0.3
s_{2}	0.5	0.1	0.4
s_{3}	0.3	0.5	0.2

curtain

- You only observe the series of coloured balls on this side of the curtain
- Did the person choosing the balls, pick them from the 3 bowl according to the transition probabilities?

Formal description of a HMM

T = length of observation sequence
$\mathrm{N}=$ number of states (bowls)
$\mathrm{M}=$ number of observation symbols (coloured balls)
$Q=\left\{q_{1}, q_{2}, \ldots, q_{N}\right\}$ series of states
$\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{N}}\right\}$ set of possible observation symbols
A HMM λ is described by
$A=\left\{a_{i j}\right\}$ where $a_{i j}=p\left(q_{j}\right.$ at $t+1 \mid q_{i}$ at $\left.t\right)$ the state transition probabilities
$B=\left\{b_{j}(k)\right\}$ where $b_{j}(k)=p\left(v_{k}\right.$ at $t \mid q_{i}$ at $\left.t\right)$
$\pi=\left\{\pi_{i}\right\}$ where $\pi_{1}=p\left(q_{i}\right.$ at $\left.t=1\right)$ initial state distribution
The model λ is written as $\lambda=(A, B, \pi)$
An observation sequence $O=O_{1}, O_{2}, \ldots, O_{N}$ is generated as follows:

1. Choose an initial state q_{1} according to the initial state distribution π
2. Sett=1
3. Choose O_{t} according to $b_{1 t}(k)$, the symbol probability distribution of state q_{1}
4. Choose a state q_{2} according to $\left\{\mathrm{a}_{\mathrm{ij}}\right\}$ for
5. Set $t=t+1$
6. Return to 3 if $\mathrm{t}<\mathrm{T}$

Demystified

If we could start with any of the 3 bowls, then $\pi=\{0.33,0.33,0.33\}$

The 3 problems to solve for a HMM

Is this a TF binding site?

Problem 1 - What is the chance that a pattern was generated by a HMM Given observation sequence $\mathrm{O}=\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{N}}$ and the model $\lambda=(\mathrm{A}, \mathrm{B}, \pi)$ How do we compute $p(O \mid \lambda)$, i.e., how do we compute the probability of the observation sequence O given the model λ ? Forward/backward algorithm

Problem 2 - What is the most likely series of states to have produced a pattern Given observation sequence $\mathrm{O}=\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{N}}$ and the model $\lambda=(\mathrm{A}, \mathrm{B}, \pi)$ How do we compute a series of states $Q=\left\{q_{1}, q_{2}, \ldots, q_{N}\right\}$ that is likely to have produced O?

Viterbi algorithm
Is this a non-coding region?
Problem 3 - Can the HMM parameters be adjusted to better describe a pattern How can we adjust the model parameters $\lambda=(A, B, \pi)$ to maximize $\mathrm{p}(\mathrm{O} \mid \lambda)$?

Baum-Welch algorithm
What HMM λ best represents this?

Problem 1 - What is the chance that a pattern was generated by a HMM

We are given an output series $\mathrm{O}=\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{T}}\right\}$ representing T observations This must have been produced by T states (not necessarily different states)
Say we observe 3 balls R, γ and $G(T=3)$
Let us assume, also this was produced by the state series $Q=\left\{s_{1}, S_{2}, s_{3}\right\}$
The probability of this series is $\mathbf{A}=\pi_{1}{ }^{*} \mathrm{a}_{12}{ }^{*} \mathrm{a}_{23}=0.33 * 0.2 * 0.4$
The probability of the R, γ and G output series from this specific state series is $\mathbf{B}=\mathbf{b}_{\mathbf{1}} \mathbf{(1)} \mathbf{b}_{\mathbf{2}} \mathbf{(2)} \mathbf{2}_{\mathbf{3}} \mathbf{(3)}=0 . \mathbf{4}^{*} 0.1^{*} 0.2$ (see $\mathrm{b}_{\mathrm{j}}(\mathrm{k})$ table on previous slide) Thus the probability of getting the observed series O from A and B, $\mathrm{p}(\mathrm{O} \mid \mathrm{A}, \mathbf{B})=\pi_{1}{ }^{*} \mathrm{a}_{12}{ }^{*} \mathrm{a}_{23}{ }^{*} \mathrm{~b}_{1}(\mathbf{1}) * \mathrm{~b}_{2}(\mathbf{2}) * \mathrm{~b}_{3}(\mathbf{3})=0.33 * 0.2 * 0.4 * 0.4 * 0.1 * 0.2=0.0002$
But this is only one possible path. We can also choose $A=\pi_{2}{ }^{*} a_{22}{ }^{*} a_{21}$ $\mathrm{p}(\mathrm{O} \mid \mathrm{A}, \mathrm{B})=\pi_{2}{ }^{*} \mathrm{a}_{22}{ }^{*} \mathrm{a}_{21}{ }^{*} \mathrm{~b}_{2}(1)^{*} \mathrm{~b}_{2}(2)^{*} \mathrm{~b}_{1}(3)=0.33^{*} 0.3 * 0.3 * 0.5 * 0.1 * 0.3=0.0004$
The probability of $\mathbf{O}=\mathrm{R}, \curlyvee$ and G is the sum of all the independent, individual paths (remember independent, mutually exclusive probabilities add: a chance that you flip a head OR a tail is $0.5+0.5=1$)

But there are $3^{*} 3^{*} 3=27$ possible paths!

$\mathbf{O}\left(\mathbf{N}^{\top}\right)$ for 20 states with 50 samples (50 residue peptide): $20^{50}=10^{34}$ years to calculate at 1 calculation/nanosecond

The Forward/backward algorithm

First the forward part...

Imagine the are three states $\mathrm{s} 1, \mathrm{~s} 2$ and s_{3} Each state has 2 outputs $\mathbf{b}_{11}, \mathbf{b}_{12}, \mathbf{b}_{21}, \mathbf{b}_{22}, \mathbf{b}_{31}$ and $\mathbf{b}_{\mathbf{3 2}}$ If we have a pattern of 10 symbols ($T=10$) There are thus $\mathbf{3}^{10}(\sim 60,000)$ paths to produce 10 symbols

What if we store the answer at each t ?

The Forward algorithm - implementation

- Lets write α, the sum of the probabilities to produce output $b_{q k}$ at state q_{t} at time t as $\boldsymbol{\alpha}_{\mathrm{tq}}$

- So, at any time $t+1$, the probability to arrive at a state q_{t+1} is the sum of the probabilities to arrive from states $q_{\mathbf{t}}$
- $\alpha_{\mathrm{t}+1}(\mathrm{j})=\left[\sum_{i=1}^{T} \alpha_{t}(i) a_{i j}\right] b_{j}(k) \quad$ eqn 1
- Thus, starting at $\mathrm{t}=1$, calculate $\alpha_{\mathrm{t}}(\mathrm{i})$ for each state, remember it, and use it to calculate each $\alpha_{t+1}(i)$ at $t=t+1$, etc.
- Thus, for this example you will perform $3^{2 *} 10$ calculations, i.e. $O\left(N^{2} T\right)$
- You finally add the $\boldsymbol{\alpha}_{\mathbf{1 0 , q}}$ values to get the overall probability to observe pattern O

An example HMM for the Forward algorithm

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	0.1	0.4	0.5
$\mathbf{2}$	0.3	0.4	0.3
$\mathbf{3}$	0.2	0.3	0.5

$\mathrm{b}_{\mathrm{j}}(\mathrm{k})$		
	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{1}$	0.5	0.5
$\mathbf{2}$	0.5	0.5
$\mathbf{3}$	0.5	0.5

$$
0=\{0,0,0,0,0,1,1,1,1,1\}
$$

Forward algorithm code

```
pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.5,0.5],[0.5,0.5]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]
def forward(pi_matrix,a_matrix,b_matrix,pattern_list):
    number_of_states = len(a_matrix)
    length = len(pattern_list)
    alpha_matrix = np.zeros(number_of_states,dtype = float)
    temp_alpha_matrix = np.zeros(number_of_states,dtype = float)
    alpha_matrix = np.copy(pi_matrix)
    alpha_results = np.zeros((number_of_states,length),dtype = float)
    for i in range(length):
    for j in range(number_of_states):
        if(i==0):
            temp_alpha_matrix[j] =
            alpha_matrix[j]*b_matrix[j,pattern_list[i]]
        else:
            temp_alpha_matrix[j] =
            np.dot(alpha_matrix,a_matrix[:,j])*
            b_matrix[j,pattern_list[i]]
        alpha_results[j,i] = temp_alpha_matrix[j]
        alpha_matrix = np.copy(temp_alpha_matrix)
    return(np.sum(alpha_matrix))
```


Forward algorithm code output

```
alpha 0 0 = 0.2
alpha 1 0 = 0.15
alpha 2 0 = 0.15
alpha 0 1 = 0.0475
alpha 1 1 = 0.0925
alpha 2 1 = 0.11
alpha 0 2 = 0.02725
alpha 1 2 = 0.0445
alpha 2 2 = 0.05325
alpha 0 3 = 0.0133625
alpha 1 3 = 0.0223375
alpha 2 3 = 0.0268
alpha 0 4 = 0.00669875
alpha 1 4 = 0.01116
alpha 2 4 = 0.01339125
alpha 0 5 = 0.0033480625
alpha 1 5 = 0.0055804375
alpha 2 5 = 0.0066965
alpha 0 6 = 0.00167411875
alpha 1 6 = 0.002790175
alpha 2 6 = 0.00334820625
alpha 0 7 = 0.0008370528125
alpha 1 7 = 0.0013950896875
alpha 2 7 = 0.0016741075
alpha 0 8 = 0.00041852684375
alpha 1 8 = 0.000697544625
alpha 2 8 = 0.00083705353125
alpha 0 9 = 0.000209263389062
alpha 1 9 = 0.000348772323437
alpha 2 9 = 0.0004185267875
Probability = 0.0009765625
- Danger of underflow
- Add logarithms
```


The Backward algorithm

The Backward algorithm is the reverse of the Forward algorithm Use either, not both!

We must be at $\mathrm{t}=10$, because we have 10 symbols

$$
\beta_{\mathrm{T}}=1
$$

$$
\beta_{\mathrm{i}}(\mathrm{t}-1)=\left(\sum_{j=1}^{N} a_{i j} \beta_{j}(t)\right) b_{j}(k)
$$

$\mathrm{O}\left(\mathrm{N}^{2} \mathrm{~T}\right)$

Calculate $\beta_{i}(t-1)$ for every t from $t=T$ to $t=1$
Finally $\max \left[\left(\sum_{j=1}^{N} \pi_{i} \beta_{j}(t)\right) b_{j}(k)\right]$ is calculated
Accounts for the starting π-distribution

Backwards algorithm code

```
pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.5,0.5],[0.5,0.5]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]
```

```
def backward(pi_matrix,a_matrix,b_matrix,pattern_list):
    number_of_states = len(a_matrix)
    length = len(pattern_list)
    beta_matrix = np.ones((number_of_states,1),dtype=float)
    temp_beta_matrix = np.zeros((number_of_states,1),dtype = float)
    beta_results = np.ones((number_of_states,length),dtype = float)
    for i in range(length-1,-1,-1): #N-1 to 0, backwards
        for j in range(number_of_states):
            temp_beta_matrix[j,0] =
            np.dot(a_matrix[j,:],beta_matrix[:,0])*
            b_matrix[j,pattern_list[i]]
            beta_results[j,i] = temp_beta_matrix[j,0]
        beta_matrix = np.copy(temp_beta_matrix)
    return(np.dot(pi_matrix,beta_matrix))
```


Backward algorithm code output

```
beta 0 0 = 0.0009765625
beta 1 0 = 0.0009765625
beta 2 0 = 0.0009765625
beta 0 1 = 0.001953125
beta 1 1 = 0.001953125
beta 2 1 = 0.001953125
beta 0 2 = 0.00390625
beta 1 2 = 0.00390625
beta 2 2 = 0.00390625
beta 0 3 = 0.0078125
beta 1 3 = 0.0078125
beta 2 3 = 0.0078125
beta 0 4 = 0.015625
beta 1 4 = 0.015625
beta 2 4 = 0.015625
beta 0 5 = 0.03125
beta 1 5 = 0.03125
beta 2 5 = 0.03125
beta 0 6 = 0.0625
beta 1 6 = 0.0625
beta 2 6 = 0.0625
beta 0 7 = 0.125
beta 1 7 = 0.125
beta 2 7 = 0.125
beta 0 8 = 0.25
beta 1 8 = 0.25
beta 2 8 = 0.25
beta 0 9 = 0.5
beta 1 9 = 0.5
beta 2 9 = 0.5
Probability = 0.0009765625
```


Applications of Problem 1 - What is the chance that a pattern was generated by a HMM

- Compare a sequence to a trained HMM for functional sequences such as TATA boxes, transcription factor binding sites, replication origins, centromeres, etc.

- A normal EKG is composed of three wave segments: the P, the QRS complex and the T

normal

- The measured EKG can be compared to normal and abnormal HMM to detect cardiac problems
- Word and image recognition

Excuse me while I kiss the sky vs
Excuse me while I kiss this guy Jimmy Hendrix - Purple Haze

Problem 2 - What is the most likely series of states

 to have produced a patternGiven observation sequence $\mathbf{O}=\mathbf{O}_{1}, \mathbf{O}_{2}, \ldots, \mathbf{O}_{\mathbf{N}}$ and the model $\boldsymbol{\lambda}=(\mathrm{A}, \mathrm{B}, \boldsymbol{\pi})$ How do we compute a series of states $Q=\left\{q_{1}, q_{2}, \ldots, q_{N}\right\}$ that is likely to have produced \mathbf{O} ?

\mathbf{N}^{\top} possible paths (light grey arrows), i.e. $\mathbf{O}\left(\mathbf{N}^{\top}\right)$ - unfeasible calculation The Viterbi algorithm finds a path that results in the largest cumulative probability of the output pattern O (illustrated by the black arrows) Viterbi is related to the Forward algorithm, but records the maximum probability for the transitions to a state q_{i}, as opposed to the sum of all probabilities for the q_{i-1} to q_{i} transition
Viterbi algorithm complexity: $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{~T}\right)$
Dynamic programming type algorithm

Viterbi algorithm

For the maximum δ_{it} for every state i at every time t, record the $\delta_{\mathrm{it}-1}$ that resulted in the current max $\delta_{i t}$ in matrix Ψ_{t}

At $\mathrm{t}=\mathrm{T}$, choose the maximum δ_{it}, and trace the path that resulted in that maximum using the Ψ_{t} matrix back to $t=1$

Viterbi algorithm code

```
pi_matrix = np.array([0.4,0.3,0.3],float)
a_matrix = np.array([[0.1,0.4,0.5],[0.3,0.4,0.3],[0.2,0.3,0.5]],float)
b_matrix = np.array([[0.5,0.5],[0.2,0.2],[0.1,0.1]],float)
pattern_list = [0,0,0,0,0,1,1,1,1,1]
```

Note the emission probability of state 3 is low

```
def viterbi(pi_matrix,a_matrix,b_matrix,pattern_list):
    number_of_states = len(a_matrix)
    length = len(pattern_list)
    delta_matrix = np.zeros((number_of_states,length),dtype = float)
    temp_delta_matrix = np.zeros(number_of_states,dtype = float)
    phi_matrix = np.zeros((number_of_states,length), dtype=int)
    path_matrix = np.zeros((length), dtype=int)
    for position_in_pattern in range(length):
        for current_state in range(number_of_states):
            for previous_state in range(number_of_states):
                    if(position_in_pattern == 0): #handle t=1 use pi_matrix
                            temp_delta_matrix[previous_state] = pi_matrix[previous_state]*
                b_matrix[current_state, pattern_list[position_in_pattern]]
                    else:
                            temp_delta_matrix[previous_state] = delta_matrix[previous_state,
                position_in_pattern-1]*a_matrix[previous_state,current_state]*
                b_matrix[current_state,pattern_list[position_in_pattern]]
            delta_matrix[current_state,position_in_pattern] =
            np.max(temp_delta_matrix)
            phi_matrix[current_state,position_in_pattern] =
            np.argmax(temp_delta_matrix)
    path_matrix[length-1]=np.argmax(delta_matrix[:,length-1])
    for position in range(length-1,0,-1):
            path_matrix[position-1] = phi_matrix[path_matrix[position],position]
    return(path_matrix)
```


Viterbi algorithm output

optimum path $=\left[\begin{array}{llllllllll}0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0\end{array}\right]$

Applications of Problem 2 - What is the most likely series of states to have produced a pattern?

Identifying ORFs, intergenic regions, CpG islands etc. by base composition

Multiple sequence alignments

Matching to protein profiles and domains

