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Abstract

Antiretroviral therapy is not curative. Given the challenges in providing life-long therapy to a 

global population of over 35 million people living with HIV, there is intense interest in developing 

a cure for HIV infection. The International AIDS Society convened a group of international 

experts to develop a scientific strategy for research towards an HIV cure. This Perspective 

summarizes the group's strategy.

INTRODUCTION

The HIV/AIDS pandemic represents the most important global health challenge in modern 

history. Fortunately, when used optimally, combination antiretroviral therapy (ART) can 

effectively control HIV replication, prevent the development of AIDS, prolong life and 

reduce transmission risk. Despite this unquestioned success, there are limitations with 

current treatment strategies. The operational and logistical challenges in delivering life-long 

treatment are daunting and the economic costs of providing ART to over 35 million people 

currently living with HIV may be unsustainable1. Life-long adherence treatment is 

challenging for many. Antiretroviral drug resistance remains a problem, particularly in those 

individuals who are unable to fully adhere to treatment. Drug toxicities and the persistence 

of immune dysfunction during ART have significant health consequences. These factors 

highlight the urgency of identifying an effective means to control the virus in the absence of 

ART, or a cure (Text Box 1). The search for a curative strategy for HIV is now a key priority 

for the HIV community2 and encouraging results have already been reported (Figure 1 and 

Text 2).

The International AIDS Society (IAS) established the “Towards an HIV Cure” initiative in 

2010. A major outcome of this initiative was the development in 2012 of a long-term 

scientific strategy by a large, multi-disciplinary group of scientists3. Given the evolving 

nature of HIV cure research (Text Box 2), the initiative expanded its scope by adding new 

members with unique expertise relevant to the emerging agenda, broadening the strategy 

beyond biomedical research to include social and behavioural sciences (Text Box 3). This 

second edition of the Global Scientific Strategy: Towards an HIV Cure 2016 describes the 

critical knowledge gaps and research questions in the field (Table).

MOLECULAR BIOLOGY OF HIV LATENCY

Background

A major barrier to curing HIV is latency, which is defined as the persistence of integrated 

viral DNA that is replication competent but transcriptionally silent. HIV persists primarily as 

a latent genome in long-lived memory CD4+ T cells and to a lesser degree in naive CD4+ T 
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cells. Whether latency occurs in myeloid cells remains controversial. Multiple cellular 

mechanisms have been defined that contribute to the establishment and maintenance of 

latency (Figure 2). A repressive chromatin environment is actively maintained at the HIV 

long terminal repeat (LTR) by the activity of histone deacetylases and other regulatory 

proteins and by the absence of host factors needed to support viral transcription, including 

nuclear factor kappa B (NF-Kb) and positive transcription elongation factor b (PTEF-b)4–6. 

Transcriptional interference by host promoter activities also prevents successful HIV 

proviral transcription7. These multiple levels of transcriptional control confer an apparent 

stochastic nature to HIV proviral DNA expression, whereby even in the face of multiple 

activating signals, latency cannot be instantaneously disrupted in all proviral genomes8.

The contribution of residual low-level (or “cryptic”) virus replication and spread during ART 

to HIV persistence is unresolved. Two controlled studies of ART intensification with the 

integrase inhibitor, raltegravir, found evidence of persistent cycles of virus replication in a 

subset of participants9,10. A study of HIV sequence evolution within lymph node tissue 

found evidence of viral evolution within the first six 6 months of initiating ART, consistent 

with low-level replication11,12, but other studies of long-term ART failed to find any 

evidence of evolution13, even in tissues14.

The current most-studied approach for eliminating latently infected T cells is based on the 

hypothesis that HIV latency can be reversed, leading to the clearance of these cells through 

virus or immune mediated cytolysis (“shock and kill”). Although the administration of 

LRAs, including histone deacetylase inhibitors (HDACi) and disulfiram to HIV-infected 

individuals on ART have demonstrated an increase in both cell associated and plasma HIV 

RNA, these interventions had no apparent effect on the frequency of latently infected 

cells15–18. It is unknown whether current approaches have failed because they are 

insufficiently potent or because cells induced to produce virus are not cleared19.

Understanding blocks in HIV transcription and virus production in latently infected resting 
cells

Basic research on the cellular mechanisms that constitute the rate-limiting steps controlling 

gene expression in resting CD4+ T-cells may be informative. Indeed, a better understanding 

of factors that allow or restrict transcriptional initiation and RNA processing at the HIV 

LTR, and how to manipulate these factors therapeutically is needed (Figure 2).

HIV RNA transcription is not the only event that is required to effectively disrupt latent 

infection. HIV mRNA export, splicing and translation, viral antigen expression, and/or 

processing and presentation have been relatively under-studied, especially within resting 

memory CD4+ T-cell populations. A full understanding of the steps and processes that allow 

the rare latently infected cell to be revealed to the immune system, or to be targeted, is still 

lacking.

Development of in vitro models of HIV latency

The field currently lacks validated systems with which to test and compare different 

“latency-reversing agents” (LRAs)20. The development of in vitro cellular models based on 
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resting CD4+ T-cells is critically needed. These models will need to reiterate the biology 

critical for the establishment and maintenance of latency.

Development of more selective and effective LRAs

While it is clear that LRAs can stimulate the production and release of virions from a small 

subset of infected cells in vitro, more potent LRAs are needed. This will likely require the 

redistribution or upregulation of several key cellular factors with combination therapies21. 

Identifying such combinations with current in vitro systems will be challenging as these 

systems fail to capture the complex in vivo signalling networks that maintain memory cells 

in a resting state (and hence maintain latent infection). One new approach under study may 

function indirectly by activating antigen-presenting cells to signal and activate memory cells 

(e.g., toll-like receptor agonists). Current systems are also unable to study LRA activity over 

prolonged periods, which will likely be needed given the stochastic nature of latency 

reversal, and highlight the role of animal models in this research.

All LRAs target host cellular pathways and hence might have untoward effects on multiple 

other host genes22. LRAs that broadly activate all T cells will likely reverse latency, but the 

inflammatory consequences will almost certainly prove risky23. LRAs that alter the 

epigenetic environment that silences DNA transcription could increase the risk of malignant 

transformation; indeed, the first generation of LRAs studied in the clinic (vorinostat and 

panobinostat) had mutagenic potential in common screening assays. Given non-specific 

effects on the activation status of memory cells, some LRAs have the potential to stimulate 

cell proliferation, which could lead to expansion of an infected cell population24,25. Immune 

modifying drugs that mitigate this response may need to be developed along with LRAs. 

Finally, these approaches will have to be carefully vetted for their potential to dampen the 

very immune responses needed for viral clearance26.

Strategies to permanently silence the HIV provirus

An alternative approach that represents a significant departure from the “shock and kill” 

paradigm is to fully and irreversibly suppress HIV transcription, leading to permanent 

silencing and the lack of virus production when ART is discontinued. This strategy will 

likely require a greater degree of specificity with respect to targeting the HIV LTR27,28. We 

lack an understanding of the molecular mechanisms involved in pharmacologically-mediated 

“deep” latency, and the durability of this state.

Defining the role of HIV replication as a cause of persistence

The role of ongoing HIV replication in maintaining HIV persistence remains controversial. 

HIV may continue to spread despite ART as a consequence of insufficient drug potency, 

pharmacologic barriers that prevent distribution of treatment to all tissue reservoirs and/or 

lack of effective immunity, particularly in potential immune-privileged sanctuaries. Assays 

that can assess new infection events rather than simply the production of virions will need to 

be developed; these assays will presumably need to be validated using lymphoid tissues. 

Novel strategies that overcome potential mechanisms for persistent replication (e.g., more 

potent ART, enhanced T cell immunity) will need to be studied in animal models and 

eventually people to determine if replication persists and if it can be inhibited.

Deeks et al. Page 4

Nat Med. Author manuscript; available in PMC 2017 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



THE IMMUNOLOGY OF HIV PERSISTENCE

Background

Untreated HIV causes irreversible harm to the immune system. Effective ART reverses many 

of these abnormalities, but a state of persistent inflammation and immune dysfunction 

typically persists. This immune state during ART is characterized by chronic low level 

inflammation within the adaptive and innate immune systems, elevated immunoregulatory 

responses, and CD4+ and CD8+ T cell dysfunction. It is expected that this compromised 

immune state contributes to HIV persistence on ART and that efforts to control HIV in the 

absence of ART may require interventions that reverse some or all of these immunologic 

abnormalities29.

Characterizing and quantifying the total body burden of replication-competent HIV is 

challenging as most of the virus resides in difficult-to-access lymphoid issues. In blood and 

tissues, HIV primarily persists in either latently or productively infected memory CD4+ T 

cells30–32. Over time, the virus may become enriched in memory cells with self-renewing 

stem-cell like capacity33. T follicular helper (Tfh) may also be highly enriched for 

replication-competent virus, perhaps because they largely reside in B cell follicles, which are 

relatively inaccessible to HIV-specific CD8+ T cells34,35. Although macrophages are 

productively infected during untreated HIV infection, it has proven difficult to demonstrate 

conclusively that replication-competent HIV persists indefinitely in these cells during ART36 

or that HIV persists in those tissues that are rich in macrophages, particularly the central 

nervous system37,38.

It is generally accepted that the biology of CD4+ T cell memory determines the fate of 

latently infected cells. Major knowledge gaps exist in this area. The life span of these cells in 
vivo is unknown. Clonal expansion of HIV in memory CD4+ T cells is apparently common, 

perhaps because the site where HIV integrates enhances cell proliferative or survival 

capacity14,39–42. The relative contributions of cytokine-mediated T cell turnover (T cell 

homeostasis) versus antigen-mediated T cell activation on the persistence of the replication-

competent reservoir is unknown, but massive and sustained clonal expansion of cells 

containing an intact provirus capable of sustaining infectious viremia has been reported42.

Defining the distribution of HIV during ART

We need to better define and quantitate the anatomical and cellular sites of HIV persistence 

on ART, and assess their evolution over time. For accessible tissue sites (e.g., lymph node 

and gut), the spatial distribution of the replication-competent virus should be defined and the 

degree that active replication persists within putative “sanctuaries” (e.g., the B cell follicle or 

variable sites of antiretroviral penetration) determined12,35. For tissue sites that are less 

accessible (e.g., spleen, brain, genital tract, and thymus), tissue banks should be accessed as 

these contain samples both from biopsies and autopsies of HIV-infected people who died 

while on ART. It is expected that further validation of non-human primate models will 

complement these human studies.

A number of questions persist regarding the memory CD4+ T cell populations that harbour 

HIV during ART. Is HIV enriched in cells with certain antigen-specificity during ART? Can 
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replication-competent HIV be readily found in all CD4+ T cell populations, including T 

regulatory cells, Th1, Th2, Th17, and Tfh cells? Does the distribution of virus across these 

populations change over time? What is the nature of the tissue-resident CD4+ T cells that 

harbour latent HIV and cannot be readily sampled in humans? Does signalling between 

antigen-presenting cells (e.g., dendritic cells, macrophages) and neighbouring infected cells 

in lymphoid tissues contribute to latency43?

An emphasis should be placed on exploring how human variability (e.g., host genetics, age, 

gender, co-morbidities, co-infections, HIV disease progression state, and the microbiome) 

affects HIV persistence on ART. Since the majority of those infected with HIV are 

chronically co-infected with other pathogens such as malaria, Mycobacterium tuberculosis, 

hepatitis B and C virus and helminthic worms, the impact of such co-infections on the 

persistence of HIV should also be studied. Also, as the epidemic matures, more people will 

have been on suppressive ART for up to two decades. The long-term (decades) stability of 

the reservoir in terms of size, distribution, response to activation and replication-competence 

should be defined.

Defining the biology of the reservoir

How CD4+ T cell memory is established and maintained in humans has not been fully 

characterized. These efforts will likely involve transcriptomic and proteomic analysis of 

infected cells as well as analysis of the transcriptional state of the virus. The impact of 

anatomical site, microenvironment, cellular metabolism, and microbiome on T cell 

dynamics should be defined.

Enhancing capacity of the immune system to clear or control HIV

Most cure strategies will require active elimination of infected cells or control of HIV 

persistence by T cells, antibodies, NK cells and/or macrophages. With regard to enhancing T 

cell function, a number of approaches should be pursued. T cell vaccines that are able to 

enhance HIV-specific immunity remain a priority. There is specific interest in approaches 

that stimulate responses against novel, non-dominant epitopes, given that cytotoxic T 

lymphocyte (CTL) escape to standard (canonical) epitopes likely exist in the majority of 

individuals and that most vaccines appear to stimulate pre-existing memory responses44. A 

potent cytomegalovirus (CMV) vector reengineered to stimulate sustained responses to 

novel, non-immunodominant epitopes has shown promise in nonhuman primate 

models45–47.

Broadly neutralizing antibodies (bNabs) may also play a role48–52. The degree to which such 

antibodies might target latently infected cells that go on to express viral antigens 

spontaneously or following induction by a LRA, or are able to overcome the sequence 

diversity which emerges in chronic infection needs to be defined. The optimal effector 

pathway (e.g., natural killer (NK) cells, macrophages, complement) for clearing infected 

cells is unknown53. Therapies that target effector cells that home to lymphoid tissue, 

including chemokine blockade and/or disruption of B-cell follicles, should also be pursued. 

Bi-specific antibodies that enhance virus production and simultaneously recognize and 

eliminate virus-expressing cells have shown promise in pre-clinical models and should be 
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advanced into the clinic, recognizing that potentially harmful off-target effects may 

occur54,55.

Targeting T cell homeostasis and T cell dysfunction

Therapies aimed at reversing chronic inflammation could contribute to cure or remission by 

(1) altering the chronically dysfunctional immunoregulatory environment with an aim at 

enhancing T cell function, (2) reducing T cell proliferation (homeostatic and antigen-driven) 

and (3) reducing virion production and the generation of new target cells, thereby reducing 

virus spread. Proof-of-concept for these approaches was recently demonstrated in non-

human primates56. Potentially targetable pathways that could be informative if blocked or 

enhanced include immune checkpoints (PD-1, CLTA-4, TIGIT, others), IDO, IL-18, mTOR, 

JAK/STAT, IL-10, and TGF-beta, among others.

Many of these approaches have significant risks, which makes studies in generally healthy 

HIV-infected adults on ART challenging from an ethical perspective. More interactions 

between HIV specialists and other disciplines working with these approaches are urgently 

needed. There may be particular synergies between HIV and those working in oncology, 

autoimmune diseases, and transplantation. Indeed, careful studies of HIV-infected adults 

undergoing transplantation have revealed novel insights regarding HIV persistence on ART 

and the potential role of immune-modifying therapies57,58. Careful studies of HIV-infected 

adults with cancer receiving immune checkpoint blockers and other emerging 

immunotherapies should prove to be particularly informative and may lead to identification 

of novel curative strategies for HIV infection59.

Developing and maintaining well-characterized cohorts

Studies of those who control HIV naturally (“elite controllers”) have provided the strongest 

evidence to date that HIV-specific CD8+ T cell immunity can contribute to virus control60. 

More recently, a group of individuals who might have been destined for poorly controlled 

HIV was possibly turned into long-term controllers by the early introduction of ART that 

was subsequently discontinued61,62. The development of larger cohorts of these “post-

treatment controllers” will be needed to confirm these provocative findings. Other cohorts 

that will likely prove valuable include those of individuals undergoing solid organ 

transplantation58 or of individuals receiving immunotherapy and other treatments for the 

management of cancer and other chronic disease59.

MODELS FOR HIV CURE OR SUSTAINABLE REMISSION

Background

Animal models involving experimental AIDS virus infection of non-human primates and 

humanized mice provide numerous important experimental advantages, including the ability 

to control experimental variability, definition of the identity, size, timing, and route of the 

virus inoculum, and flexibility of experimental and therapeutic interventions. The ability to 

perform extensive tissue sampling in animal models, including elective necropsy, is a key 

advantage as the vast majority of virus that persists on ART resides in tissues that are 

difficult to impossible to sample in a clinical setting. These models are important 

Deeks et al. Page 7

Nat Med. Author manuscript; available in PMC 2017 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contributors to the overall research effort aimed at achieving HIV remission. Studies 

utilizing animal models have informed the field about how quickly latency is established, the 

anatomic and cellular components of the reservoirs, and the responses to novel 

interventions35,63,64. ART regimens have recently been developed that can achieve and 

maintain clinically relevant levels of viral suppression in nonhuman primate models, and 

encouragingly with regard to the potential predictive value of such studies, results in 

nonhuman primate studies of latency reactivating agents have paralleled results from clinical 

studies of the same agents65.

Humanized mouse models have also been used for studies in this area, but limitations on 

sampling from individual animals, the relatively short duration of feasible studies (weeks) 

and graft vs host disease in many models restrict their utility to addressing only certain 

questions64,66. However, such models permit the rapid evaluation of selected strategies in the 

context of HIV infection of human immune cells.

Development of models

Due to the high bar to clinical testing of unproven and potentially hazardous interventions in 

a population doing well with standard of care ART, animal models provide an important 

pathway for the evaluation of novel strategies to achieve cure or sustained off ART 

remission of HIV infection, serving as a key step for in vivo proof of concept study and 

safety testing. Key research questions in this setting include further efforts to establish 

whether these models recapitulate known and newly discovered features of HIV persistence 

in humans on ART, including cellular and anatomic sites of residual virus, cellular and 

molecular factors influencing latency, the nature of immune dysregulation, and responses of 

the infected hosts to experimental interventions. Results to date are encouraging, although 

some important aspects, such as potential differences in the biology of HIV persistence in 

HIV-infected humans that have been on ART for decades, can be effectively modelled in 

studies of shorter duration. Iterative studies in which cycles of preclinical experiments in 

animal models are informed by emerging clinical data offer great promise to provide insights 

into the most relevant and effective approaches.

Identity viable combination regimens

It is unlikely that any single intervention will result in a durable remission or cure. Most 

long-term strategies now being pursued involve combinations of various approaches. 

Examples include combinations of two or more latency reversing agents with therapies 

aimed to enhance clearance of virus-producing cells (“shock and kill”) or combinations of 

therapeutic vaccines with adjuvants and/or immune modifying agents (e.g., immune 

checkpoint inhibitors). Identifying, developing and optimizing such combinations will be 

challenging in humans, given that many combinations will need to be tested, and that 

characterizing the safety and pharmacology of individual interventions will likely need to be 

completed before such combinations can even be considered. Once animal models are fully 

optimized, well-resourced, iteratively designed and adequately powered studies of single and 

combination approaches should be performed, with the most promising combinations 

advanced into humans.
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HIV REMISSION IN THE PEDIATRIC POPULATION

Background

Worldwide there are almost 4 million children living with HIV and 250,000 are infected 

every year61. Children face a prospect of life-long ART and the added challenges associated 

with ART through childhood and adolescence (e.g. limited appropriate drug formulations, 

poor adherence). As such, HIV remission represents an especially desirable goal for the 

pediatric population.

Perinatal HIV-infection offers a unique opportunity to assess prompt control of HIV 

replication because of the known timing of HIV exposure through maternal infection. Other 

factors that may potentially further reduce the frequency of latently infected cells include 

immune tolerance in infancy, lower immune activation compared to adults, and the slower 

pace of T cell memory development67–69.

Characterize mechanisms for persistence

The major knowledge gaps for perinatal HIV infection are in understanding the mechanisms 

of latency in infants and children. The dynamics of HIV persistence in children are probably 

different than those in adults, owing to a number of factors such as the types and numbers of 

target cells, efficiency in clearing HIV-infected cells, and pharmacokinetics of ART in blood 

and tissues. Little is known about the development of the newborn and infant innate and 

adaptive immune system, and about the role of immune activation, homeostasis, 

inflammation, and viral and host factors in the establishment and maintenance of HIV 

latency70. Early ART can preserve normal development of B and T cells, as demonstrated by 

the ability to mount immune responses against childhood vaccines. However, there is limited 

understanding about the development of HIV-specific B and T cell immunity including 

neutralizing and non-neutralizing antibodies, and effector and polyfunctional T cell 

responses. Development of techniques for virologic and immunologic characterization that 

require small blood volumes is critical to advancing paediatric cure research. Infant animal 

models could be used to fill gaps and limitations in pediatric HIV pathogenesis and 

mechanisms of interventions.

CELL AND GENE THERAPY

Background

There is growing interest in the potential of gene and cell therapies to treat HIV infection 

(Figure 3). This has been driven in part by recent technological advances and successes in 

other disease areas, especially inherited immune deficiencies and cancer, and the successful 

outcome for Timothy Brown71. This individual received a hematopoietic stem cell (HSC) 

transplantation as part of treatment for acute myeloid leukemia, from a donor who was 

homozygous for the CCR5Δ32 deletion and therefore resistant to HIV infection. Mimicking 

this approach, most gene therapies to date for HIV have been based on engineering a 

patient’s own (autologous) cells to confer HIV-resistance, either by removing CCR572 or 

introducing genes that encode anti-HIV proteins73,74.
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Gene therapies are also being considered as a way to directly remove HIV-infected cells on 

ART, although daunting technical barriers exist. Other approaches seek to target integrated 

HIV genomes for inactivation using engineered nucleases such as zinc finger nucleases 

(ZFNs), TAL effector nucleases (TALENs) or CRISPR/Cas975 although directing such 

treatments to latently infected cells in vivo poses substantial challenges, including the 

potential off-target mutations. More practically, immune cells could be modified to 

recognize and destroy HIV-infected cells that express HIV antigens76 in the same way that 

engineered T-cell receptors or chimeric antigen receptor (CAR) T cells have proven 

successful against certain cancers77,78. Finally, cells could be turned into factories for the 

long-term production of anti-HIV molecules, such as broadly neutralizing antibodies79 or 

CD4/CCR5 mimetics80.

Since fully myeloablative conditioning will not be acceptable in non-cancer settings, the 

percentage of gene-modified cells immediately post-transplant will represent a minority of 

the cells in the body. Although it is assumed that there could be some selection for gene 

modified HIV-resistant cells as the virus depletes those that remain gene unmodified and 

hence HIV-susceptible, this may not be effective if ART is maintained and there is little/no 

replicating virus in the individual. Such selection could be temporarily induced with a 

treatment interruption, although how long a period of uncontrolled virus replication would 

be required to select for a sufficient number of gene modified cells is unknown, and there 

will be limited support for studies that require prolonged periods of viremia.

Explore the potential of engineered T cells to eliminate HIV-infected cells

The field of T cell engineering is rapidly moving, with great successes in the area of 

immunotherapies for cancer. In a similar approach, it is possible that engineering T cells to 

express modified TCRs, or CARs recognizing HIV antigens, could provide control of HIV 

or eliminate infected cells. Other immune effector cells are also being developed as 

candidates for these methods81.

Develop an HIV-resistant T cell population

There are a number of gene modifications that might render a T cell resistant to HIV infect. 

Achieving a life-long remission will likely require protecting all possible target cells, 

including CD4+ T cells and perhaps monocyte/macrophages. The ideal population to target 

are hematopoietic stem cells (HSCs) as they are long-lived precursors for multiple cell types, 

but these cells are rare and technically challenging to isolate, gene-modify and engraft. As 

reengineered stem cells have the potential for malignant transformation, the use of “kill 

switches” (genes which can be activated to cause cell death) will likely need to be 

considered.

Develop methods to deliver targeted nucleases to latently infected cells

Targeted nucleases such as ZFNs and CRISPR/Cas9 can disrupt HIV proviral DNA in cell 

culture models, but their application in HIV-infected individuals will require enhanced 

methods of delivery. This includes the challenge of delivery to the rare, latently infected 

cells that may not express HIV antigens. Achieving in vivo delivery is a challenge for the 

field of gene therapy in general.
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Apply methods to boost immune responses in combination with cell and gene therapies

It is uncertain if genetically modified HSC or T cells, even if they are resistant to HIV 

infection, could mediate eradication of other infected cells. Thus some additional 

mechanisms will likely be required to control or eliminate persistent HIV, while the gene-

modified HIV-resistant cells protect against re-infection. Cell and gene therapies could 

therefore be combined with other treatments that boost HIV-specific immune responses, 

including novel therapeutic vaccine strategies, drugs modulating T cell responses such as 

PD-1 inhibitors, and LRAs. There are already some indications that engineered HSC- 

derived CD4 T cells or peripheral T cells can boost the endogenous immune system to 

control HIV74,82 but this needs to be understood better.

Development of less toxic immunosuppressive conditioning regimens

While the efficiency of rendering T cells or HSCs resistant ex vivo has improved 

substantially over the past years, there is still an enormous problem in getting these cells to 

engraft without the use of toxic conditioning regimens. Although chemoablation increases 

the efficiency of engraftment of gene-modified HSCs and T cells, there are concerns about 

its toxicity. One mitigating approach is to do such studies first in HIV-infected individuals 

with cancer, but this patient population is small and getting smaller. More investigation is 

needed into the long-term effects of such treatments since the risks of ablation in the 

autologous gene therapy setting are unknown. Thus, novel less toxic regimens need to be 

developed. These include safer (non-mutagenic) methods of conditioning and the possibility 

of positive selection for engineered cells in vivo, post-transplantation83.

NOVEL BIOMARKERS TO ANALYSE/QUANTIFY HIV RESERVOIRS

Background

The quantitative viral outgrowth assay (QVOA) has long been considered the gold-standard 

for measuring the size of the replication-competent reservoir84–86. The assay is labour 

intensive, expensive and requires large numbers of cells. Recent advances in measuring 

inducible virus have included a similar limiting dilution format but measuring production of 

cell associated RNA or release of viral RNA in supernatant87,88 and amplification of latent 

infectious virus using a humanized mouse model – the murine viral outgrowth assay 

(MVOA)89.

HIV-infected cells can also be quantified using PCR based assays. Total or integrated HIV 

DNA are both high throughput assays that are more easily standardised; however, they over 

estimate the number of latently infected cells because most proviruses that persist during 

ART have lethal mutations or deletions8,90. Quantification of low-level plasma viremia by 

single copy assay is useful in studies of latency reversal but its relationship with the 

frequency of latently infected cells is unclear (Figure 4)90.

It is possible that measuring the immune response to HIV could be a more sensitive strategy 

to detect residual virus than measuring the virus itself. The avidity and concentration of HIV 

antibodies appears to change with declining numbers of latently infected cells91 and markers 
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of T cell activation and proliferation have been shown to correlate with the number of 

latently infected cells in multiple studies29.

No biomarker has been identified that can accurately and consistently predict time to viral 

rebound following ART discontinuation or the duration of ART-free remission, although 

progress is being made92,93. In the absence of predictable biomarkers of virologic rebound, 

assessment of HIV remission requires interruption of ART.

Define the performance characteristics of existing and evolving biomarkers

The performance characteristics of putative biomarker assays need to be much better 

characterized through unbiased assessment of sensitivity, specificity, precision and accuracy 

through testing of blinded panels of clinical samples that are prepared and distributed by a 

central organization. Impartial, centralized distribution of test panels and data analysis are 

critical components of the research infrastructure needed to accurately determine biomarker 

assay performance. These efforts should include both blood-based and tissue-based 

biomarkers.

Develop highly sensitive biomarkers of HIV persistence

Biomarkers in blood may be too insensitive to adequately represent the extent of HIV 

persistence in tissue35. Indeed, in the previous case reports of prolonged remission following 

HSC transplantation in Boston94 and very early ART administration to a child born to an 

untreated HIV-infected mother in Mississippi95 provide evidence that blood sampling alone, 

perhaps because there is a limit to how much blood can be collected, will be inadequate as a 

measure of HIV persistence. Less cumbersome and more scalable means of sampling tissue 

reservoirs need to be achieved as a potential means of increasing the sensitivity of 

biomarkers of HIV persistence. Advances in whole body imaging technologies such as 

immune-PET scanning96 and stereotactic guided tissue sampling hold promise but reduction 

of risk and simplification of the sampling process to that equivalent to phlebotomy are 

formidable challenges. Animal models, such as humanized mice and the MVOA can 

enhance the lower limit of sensitivity to detect infectious HIV allowing for the use of large 

numbers of human cells that exceed what is currently possible in vitro, although these 

models will be limited by amount of cells which can be infused and by costs.

Identify specific markers of an infected cell

There is a compelling need to identify phenotypic markers for latently infected cells in vivo. 

It has been argued that HIV is enriched in cells that express markers of T cell activation and 

function, including HLA-DR, CCR5, CCR6, CXCR3 and PD-130,97–99 although it is likely 

that only a fraction of cells expressing such markers harbour latent HIV. Whether persistent 

virus in activated cells differs from resting cells remains unclear. The identification of 

markers for the infected population could allow more targeted therapies.

Develop methods for detection of replication-competent proviruses

These methods may involve nucleic acid detection of signature proviral sequences that are 

present only in intact proviruses and not in defective ones; high throughput, full-length 

single genome sequencing to identify intact proviruses; or simplified virus outgrowth assays 
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that induce the complete reactivation of latent but intact proviruses, potentially using 

additional stimuli other than activation of the T-cell receptor100. Recent innovations in high-

throughput analyses of single cells should be applied with the goal of quantifying rare cells 

with inducible, intact proviruses.

Develop non-virologic biomarkers that quantify the total-body reservoir

Potential biomarkers of this type include the levels of antibody to specific HIV proteins, the 

affinity of antibodies for such proteins, or the frequency of B-cells responsive to specific 

HIV-1 antigens. Similarly, assays to assess the frequency of CD4+ or CD8+T-cells that are 

responsive to specific HIV-1 antigens should be sought as markers of HIV-1 persistence. 

Host transcriptional or metabolic signatures of continued innate or adaptive immune 

response to HIV-1 nucleic acids or proteins may also prove to be sensitive markers of HIV-1 

persistence.

Validate biomarkers for use in studies of HIV cure/remission

Any putative biomarker needs to be validated as a predictor of the duration of ART-free 

remission. A major repository of biologic samples of various types (blood, body fluids and 

tissues) and a robust clinical database of individuals who suspend ART in a controlled 

manner, are essential for validation of candidate biomarkers.

Characterize and validate biomarkers for all HIV subtypes

An infrastructure to support biomarker development on a global scale will be needed to 

ensure that assays are optimised to detect common circulating HIV clades, in addition to 

subtype B.

SOCIAL SCIENCES AND HEALTH SYSTEMS RESEARCH

Background

Given the complexity of cure science outlined in the preceding sections, research on science 

translation and public engagement is critical. Social science research on HIV cure has the 

potential to guide meaningful community engagement, ensure ethical conduct of research, 

mitigate the risks of behavioural disinhibition and therapeutic misconception, enhance 

patient-physician communication, engage global key populations, ensure economic viability, 

and reduce pervasive HIV and sexual stigma. Health systems research can facilitate policy-

relevant research synergies, assist with health systems preparedness, spur public-private 

collaboration, and inform effective community engagement strategies.

Identify HIV-infected individuals’ perceptions

The voices of HIV-infected individuals always have been central to the HIV response, and 

this must extend to cure research101. For many individuals with HIV infection, their 

serostatus has been the basis for making a number of decisions that influence health (e.g., 

serosorting and other sexual behaviours) and wellbeing (e.g., participation in community 

groups and advocacy). How they understand the meaning of HIV cure is important, because 

these beliefs may influence participation in clinical trials, trust in HIV service delivery 
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systems, engagement in care and treatment, serostatus disclosure, and ongoing risk and 

protective behaviours.

The personal, behavioural, ethical and social implications of participating in HIV cure 

clinical research warrant greater attention in the context of clinical research. Examples of 

this type of research include the following: research about how to effectively communicate 

the science, benefits and risks of HIV cure trials as part of informed consent102,103; 

qualitative research among HIV-infected trial participants and their partners about how 

participation in cure studies affect the participant’s HIV identity, sexual behaviours, and 

social relationships; and research on how HIV-infected individuals understand (or 

misunderstand) ongoing HIV cure research104,105.

Measuring and increasing stakeholder engagement

There are multiple stakeholders in cure research, including HIV-infected individuals, key 

affected populations, health professionals, scientists, funding agencies, international 

agencies, public health and regulatory authorities, pharmaceutical industries, and civil 

society organizations. The history of HIV intervention research shows how early stakeholder 

engagement along multiple levels can help increase the likelihood of success and mitigate 

failure106. However, there are many key research areas that require further investigation, 

including the following: better and more standardized tools for measuring stakeholder 

engagement and its downstream effects (e.g., changes in retention rates and recruitment pace 

in cure research projects); optimal timing and substance of HIV community and non-

community stakeholder engagement, including investigation of the role of community 

advisory boards in representing the community research interests; ensuring affordability of 

community engagement strategies, especially in resource-constrained contexts.

Clinical trial equity and inclusiveness

In order to ensure an equitable distribution of cure strategies, it is essential to incorporate a 

diverse group of participants in terms of sex, ethnicity/nationality, location, age, and other 

characteristics. However, optimal mechanisms and tools for achieving this inclusiveness are 

unclear. This field could benefit from understanding the experience of the HIV vaccine 

research field over the past several decades.107 Research opportunities in this realm include 

community-based research on how to ensure inclusiveness and representativeness in HIV 

cure studies and approaches to improve the likelihood of equitable implementation of and 

access to efficacious HIV cure strategies, especially in resource limited settings.

Health systems research

Modelling research could help researchers understand which individual cure strategy or 

group of strategies would be optimal for achieving population-level effects108. Both cost-

effectiveness (i.e., will the strategy be worth paying for?) and budgetary impact research 

(i.e., will the strategy be affordable?) will be important, especially in resource-limited 

settings109. Identifying who will pay for a cure and how prices will be established is also 

critical. Studies on how best to enhance public-private collaboration towards an HIV cure 

could alleviate some of the regulatory and logistical challenges associated with drug 

development.
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Global perspectives

The local context of HIV cure research will likely prove to be critical. For example, previous 

examples of ineffective HIV "cures" in Sub-Saharan Africa110 may influence how HIV-

infected individuals perceive HIV cure research moving forward. The cost of delivering a 

cure would likely be different in these resource-constrained contexts. Yet, to date, none of 

the existing literature has focused on low-income country contexts that have a higher burden 

of HIV and would potentially have the greatest to benefit from a cure.

CONCLUSION

The development of a safe, affordable and scalable strategy that results in complete 

eradication of HIV or sustained virus control in absence of therapy is a key priority of the 

IAS, funders, and the broader HIV community. Once considered aspirational, there are now 

a number of potential therapeutic strategies that could conceivably achieve this goal. The 

challenges, however, remain significant. A central premise of the IAS Global Scientific 

Strategy is that a multi-disciplinary, collaborative and sustained effort will be needed to 

overcome these challenges. The strategy outlined here highlight the priority areas for 

research and will hopefully guide a global strategic research effort and inspire new 

investigators to engage in the challenge.
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TEXT BOX 1

Defining cure in HIV disease

The definition of cure is important to clarify for researchers, clinicians, and people living 

with HIV. The optimal outcome would be the complete eradication within an individual 

of all replication-competent HIV. Such a sterilising cure will be challenging to achieve 

and will be impossible to prove with the current technologies111. A more feasible 

outcome will be the achievement of a long-term remission. Remission is likely a 

necessary precursor towards the development of an HIV cure, and is increasingly utilised 

in the field to indicate the goal of long-term undetectable viremia for an as-yet undefined 

period (likely of several years) in the absence of ART112. The concept of disease 

remission denotes improvement albeit with some uncertainty and is already well-

entrenched in medical settings113.

Deeks et al. Page 22

Nat Med. Author manuscript; available in PMC 2017 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TEXT BOX 2

Progress in HIV Cure Research 2012–2016

There have been a number of significant advances since the publication of the first 2012 

Global Scientific Strategy Towards an HIV Cure3. Sustained periods of aviremia in the 

absence of therapy was achieved in an aggressively treated infant, in at least two 

individuals who have received allogeneic stem cell transplant, and adults who received 

several years of ART that was initiated soon after infection (Figure 1)62,94,114,115. Non-

human primate and humanized mouse models of well-treated SIV/HIV disease have been 

validated and used to advance the scientific agenda63,116. Most HIV in blood was found 

to be replication-incompetent and most of the apparent replication-competent virus was 

found to be non-inducible ex vivo8. Early initiation of ART limits the establishment of 

the reservoir and prevents the generation of immune escape in latently infected 

cells63,117,118. New tools that can quantify the frequency of a cell that carries replication 

competent virus have been developed88,119, and some biomarkers have been shown to 

predict the time to viral rebound following a treatment interruption92,93,120,121. The 

central role of the T follicular helper cells and the B cell follicle in supporting SIV/HIV 

replication was established35. The central role of long-lived self-renewing memory CD4+ 

T cells as a reservoir during sustained ART (> 10 years) was established122, while the 

role of monocytes/macrophages as a stable reservoir during ART has been 

challenged36,123. Homeostatic proliferation induced by cytokines or HIV integration 

events as a mechanism of persistence was demonstrated25,39,40,124. Evidence was 

presented suggesting that HIV continues to replicate and evolve during the first 6 months 

of ART125 but not necessarily during long-term ART13. New latency reversing agents and 

combination approaches were identified in vitro21,126–128 and the capacity of more 

established LRAs to disrupt latency was demonstrated in a series of phase I/II clinical 

trials15–17,22,129. Novel vaccines were developed that contained and possibly cured SIV 

infection when administered before infection46, and the safety and potential efficacy of 

broadly neutralizing antibodies and bi-specific antibodies demonstrated47,51,52,54,130,131. 

The safety of gene therapy with CCR5 modification was found to be feasible and 

safe10,132.
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TEXT BOX 3

Methodology

This second edition of the Global Scientific Strategy: Towards an HIV Cure was 

developed under the auspices of the International AIDS Society (IAS) to revise and 

update the original strategy released in 2012. The strategy was discussed and developed 

by the International Scientific Working Group, a global team of leading stakeholders, 

including basic scientists, clinical physicians, social scientists, ethicists, and community 

leaders from around the world. The International Scientific Working Group was 

composed of seven multidisciplinary subgroups, including input from medical ethicists in 

each subgroup.

The Global Scientific Strategy (GSS) was discussed, developed and finalised at a series 

of in-person workshops and electronic discussions from autumn 2014 to February 2016. 

In addition to the discussions with the International Scientific Working Group, the GSS 

underwent broad dissemination for a peer-review process incorporating comments and 

edits from a broad range of stakeholders, in keeping with the values of the International 

AIDS Society. These research recommendations represent the culmination of hundreds of 

hours of online and in-person meetings with community leaders, pharmaceutical 

company representatives, funders and regulatory agency representatives, as well as HIV 

researchers from low-income, middle-income, and high-income country contexts. A 

number of non-HIV researchers were consulted on specific scientific issues.
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Figure 1. Cases of post-treatment control and resission
Viral rebound following cessation of ART usually occurs within 2–3 weeks. In some 

circumstances viral rebound has been significantly delayed in the setting of stem cell 

transplantation (Boston patients) or very early ART in an infant (Mississippi child). In some 

individuals, long term post treatment control (PTC) off ART has been achieved. In these 

PTC, ART was nearly always initiated in acute infection and virus is usually detected at low 

levels in plasma. Timothy Brown remains the only HIV-infected individual off ART with no 

virus detected in blood or tissue. He received a stem cell transplant from a donor who was 

CCR5D32 negative and remains off ART for over 7 years.
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Figure 2. Mechanisms that maintain HIV latency in resting CD4+ T-cells
There are multiple blocks to viral production in latently infected resting CD4+ T-cells 

including the site of integration (1), epigenetic silencing (2), lack of cellular transcription 

factors (3), incomplete elongation of transcripts (4), nuclear retention of transcripts (5) and 

micro RNAs limiting translation of viral proteins (6). TCR = T cell receptor; TF = 

transcription factors; co-Act = co-activators; MS = multiply spliced; US = unspliced; 

miRNA = microRNA.
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Figure 3. Using targeted nucleases against HIV
Targeted nucleases, such as zinc finger nucleases and CRISPR/Cas9, provide more precise 

methods of gene therapy. They create site-specific DNA breaks, whose subsequent repair by 

the non-homologous end joining (NHEJ) pathway can be exploited to disrupt a gene, such as 

CCR5, or even an integrated HIV genome. Alternatively, repair can occur through 

homologous recombination, and a co-introduced DNA homology template can be designed 

to create small mutations in host genes, or direct the site-specific insertion of an anti-HIV 

gene.
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Figure 4. Assays used to quantify HIV persistence on ART
The frequency of cells that produce infectious virus is only a subset of cells that are infected 

with intact (highlighted in a red line) and defective genomes (total pool of infected cells). 

US = unspliced; MS = multiply spliced; QVOA = quantitative viral outgrowth assay; MVOA 

= murine viral outgrowth assay
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