

Quadrupola	ar coupling
------------	-------------

Theory: the electric quadrupole moment Q Table 94 Quadrupole moments of selected nuclear isotopes with l > 1/2. A

Table 9.1 Quadrupole moments of selected	nuclear isotopes with $T > 1/2$. A
complete listing of nuclear quadrupole mome	ents may be found on the website
www.webelements.com.	

Isotop	e Ground-state spin	Natural abundance/%	Electric quadrupole moment/ 10 ⁻²⁸ m ²					
² H	² H 1		0.2860					
⁶ Li	1	7.59	-0.0808					
⁷ Li	3/2	92.41	-4.01					
¹¹ B	3/2	80.1	4.059					
^{14}N	1	99.6	2.044					
¹⁷ O	5/2	0.038	-2.558					
²³ Na	3/2	100	10.4					
²⁷ Al	5/2	100	14.66					
⁴⁵ Sc	7/2	100	-22					
⁵¹ V	7/2	99.8	-5.2					
⁵⁵ Mn	5/2	100	0.33					
⁵⁹ Co	7/2	100	0.42					
⁶³ Cu	3/2	69.2	-0.22					
⁶⁵ Cu	3/2	30.8	-0.204					
⁸⁷ Rb	3/2	27.8	0.132					
⁹³ Nb	9/2	100	-0.32					
!!! The stre	III The strength of quadrupolar coupling depends on Q AND the EFG!							
C	CAF J Carral Addition M. Levitt, spin dynamics, 2 nd edition, Wiley & sons,(2008)							
	STELLENBOSCH UNIVERSITY	Solid S	State NMR worksh	op 2011				

Solid state NMR has been applied to: organic complexes inorg zeolites meso microporous solids alum minerals biolo glasses ceme food products wood ceramics bone semiconductors meta archaelogical specimens polyn resins surfa

inorganic complexes mesoporous solids aluminosilicates/phosphates biological molecules cements wood bones metals and alloys polymers surfaces

CAF Carral Analytical Ascilities STELLENBOSCH UNIVERSITY

Solid State NMR workshop 2011

	repetitions (constant experiment time)	recycle / T ₁	relative S/N	tip-angle = $\cos^{-1}(e^{-t/T_1})$
	8	5	1.00	Ernst angle
	12	3.33	1.19	
	32	1.2	1.41	$tip_{ap} = 2p g \log < \frac{90}{(1+1/2)}$
	80	0.5	1.25	tip -angle < $\frac{90}{(1+92)}$
	400	0.1	0.68	quadrupoles
		. 1		
		Solid St	ate NMR workshop 2011	

