

Program

- Welcome
- Introduction: ChIP-seq, NGS sequencing
- FASTQ file format
- Introduction to Galaxy
- Registering
- Get Data to Galaxy
- Histories
- Tools Menu
- Quality Control: FastQC, Trim_galore
- Mapping: Bowtie2
- Visualizing mapped sequences: IGB
- Peak calling: MACS
- Visualizing peaks
- Computing on genomic intervals: some tools
- Identifying recognition sequences

UNIVERSITEIT
STELLENBSIT
UNIVERSITY UNIVERSITY

- Welcome
- Introduction: ChIP-seq, NGS sequencing
- FASTQ file format
- Introduction to Galaxy
- Registering
- Get Data to Galaxy
- Histories
- Tools Menu
- Quality Control: FastQC, Trim_galore
- Mapping: Bowtie2
- Visualizing mapped sequences: IGB
- Peak calling: MACS
- Visualizing peaks
- Computing on genomic intervals: some tools
- Identifying recognition sequences

The ChIP-seq technique

NGS by synthesis (Illumina)

B. Cluster Amplification

Bridge Amplification Cycles

Library is loaded into a flow cell and the fragments hybridize to the flow cell surface. Each bound fragment is amplified into a clonal cluster through bridge amplification.

NGS by synthesis (Illumina)

Reads are aligned to a reference sequence with bioinformatics software. After alignment, differences between the reference genome and the newly sequenced reads can be identified.

ChIP-seq workflow

- Welcome
- Introduction: ChIP-seq, NGS sequencing
- FASTQ file format
- Introduction to Galaxy
- Registering
- Get Data to Galaxy
- Histories
- Tools Menu
- Quality Control: FastQC, Trim_galore
- Mapping: Bowtie2
- Visualizing mapped sequences: IGB
- Peak calling: MACS
- Visualizing peaks
- Computing on genomic intervals: some tools
- Identifying recognition sequences

```
@HWI-D00466:62:C6UETANXX:5:1101:1270:2163 1:N:0:CGATGT
TGTCAGTATAAAAAAATTTTCCGCAGGATATAGAAAAAAAAGAAATGAAATTATAGTAGCGGTTATTTCCGTGGGGTGCTTTTTTACACCTGTACATCTGTTCCCTCCGTACATTTTTTTTATTI
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBF//77BBF<FFFFFFFFFFFFFFB/<F/BFFFFFFBFFBFFB<BFFB<BB
@HWI-D00466:62:C6UETANXX:5:1101:1332:2180 1:N:0:CGATGT
GCCAATGAAGAAAATACGATGAAACCATGGCAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAATAAACCGACGGTCGCATCA
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBFFFFFFFFFFFFFFFFFF<FFF<///FFFFFFFFFFBBBFFFFFFFFFB<F#########################
@HWI-D00466:62:C6UETANXX:5:1101:4490:2229 1:N:0:CGATGT
GAATCTTATTATTTTCTTTATTTAAATTTATAAAAATATAAAGTCCCCGCCCCCTTTTTATTTTATTTAATTAAGAAGGTATTTTAAAAAAGGAGTGAGGGACCCCCTCCCGTTAGGGAGGGGGA
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBF<FFF<FFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFBFFFFFFFFFFFFFF
```

The FASTQ file is a text file composed of blocks of text, with each block containing the following:

- @Sequence name
- Sequence
- +Sequence name (may be absent)
- Phred quality score

UNIVERSITEIT TELLENBOSCl UNIVERSITY

Phred score

The Phred score (Q) is a quantity, where the probability (p) that the assignment is incorrect is given by:
$p=10^{\frac{-Q}{10}}$
\therefore if $\mathrm{Q}=30, p=10^{\frac{-30}{10}}=10^{-3}=0.001$
\therefore a 1 in 1000 chance that the assigned base is incorrect

Why are Phred scores given as letters?

INIVERSITEIT TELLENBOSCH UNIVERSITY

The classic 7 bit (0-127) ASCII table

Phred score table

Accuracy (p)	Phred score (Q)	$\mathrm{Q}+33$	ASCII code
1.0	0	33	$!$
0.1	10	43	+
0.01	20	53	5
0.001	30	63	$?$
~ 0.0002	37	70	F
		\downarrow	
$10^{-9.3}$	93	$126(127$ is "DEL")	\sim

@HWI-D00466:62:C6UETANXX:5:1101:1270:2163 1:N:0:CGATGT
TGTCAGTATAAAAAAATTTTCCGCAGGATATAGAAAAAAAAGAAATGAAATTATAGTAGCGGTTATTTCCGTGGGGTGCTTTTTTACACCTGTACATCTGTTCCCTCCGTACATTTTTTTTATTT $+$ BBBBBFFFBF//77BBF<FFFFFFFFFFFFFFB/<F/BFFFFFFBFFBFFB<BFFB<BB

Each sequenced nucleotide is assigned a quality score
A Phred score higher than 20 (99% accurate) is generally OK

INIVERSITEIT
ELLENBOSCH
UNIVERSITY
UNIVERSITY

- Welcome
- Introduction: ChIP-seq, NGS sequencing
- FASTQ file format
- Introduction to Galaxy
- Registering
- Get Data to Galaxy
- Histories
- Tools Menu
- Quality Control: FastQC, Trim_galore
- Mapping: Bowtie2
- Visualizing mapped sequences: IGB
- Peak calling: MACS
- Visualizing peaks
- Computing on genomic intervals: some tools
- Identifying recognition sequences
- Welcome
- Introduction: ChIP-seq, NGS sequencing
- FASTQ file format
- Introduction to Galaxy
- Registering
- Get Data to Galaxy
- Histories
- Tools Menu
- Quality Control: FastQC, Trim_galore
- Mapping: Bowtie2
- Visualizing mapped sequences: IGB
- Peak calling: MACS
- Visualizing peaks
- Computing on genomic intervals: some tools
- Identifying recognition sequences

Introduction to Galaxy

Note: this instance of galaxy is only accessible to registered users of the SU
https://galaxy.sun.ac.za HPC

Workshop registrants from Stellenbosch can login with their normal IDs and passwords Non-Stellenbosch attendees can login with guest1-guest6, password GalaxyGuest

History for this workshop: https://caf-hpc1.sun.ac.za/galaxy/u/hpatterton/h/chip-seq-workshop-22-june-2016

- Upload data files to galaxy
- Select both R1 and R2 files (R1 is the forward primer, and R2 is the reverse primer)
- If the sequences generated several FASTQ files for a sequence run, they wil be named
- ...R1_001.fastq, ...R2_001.fastq, R1_002.fastq, ...R2_002.fastq, ...R1_003.fastq, etc.
- Build dataset pair
- Select FastQC (search for it from listbox)
- Select the dataset pair that you have defined
- Execute FastQC with default settings
- FastQC tutorial: https://www.youtube.com/watch?v=bz93ReOv87Y
- Help on each function in FastQC:
- http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3\ Analysis\ Modules/
universiteit STELLENBOSCH UNIVERSITY

UNIVERSITEIT TELLENBOSCH
UNIVERSITY UNIVERSITY

Summary

- Basic Statistics

Per base sequence quality

- X-axis: base position
- Y-axis: quality score (Q)
- Yellow box: $25-75^{\text {th }}$ percentile
- Whiskers: $10-90^{\text {th }}$ percentile
- Red line: median
- Blue line: mean
- Ideally, Q > 30

ENOSCH
SELLENBOSCH
UNIVERSITY

Per tile sequence quality

- Heatmap of read quality at a given position in sequence for each tile in a Illumina flowcell
- Colours displayed from cold (blue) to hot (red)
- Warning issued if any tile has mean Phred score 2 less than flowcell average for that position
- Error issued if any tile has Phred score 5 less than flowcell average at that position

Per sequence quality scores

- Plot of average Q value for a sequence against number of sequences with the same average Q
- Distribution should have pronounced peak at the right, with few if any small bumps in the central/low Q positions

Per base sequence content

- Plot of \% content for each of the 4 nucleotides G, A, T and C
- The \% composition for each should be fairly constant for the sequence length
- If there is a significant deviation at one or more positions, it may indicate a significant library bias, or problem with the synthesis reaction

Per sequence GC content

- Plot of the average GC\% against number of sequences
- A theoretical, normal distribution is calculated, based on the observed GC\% of all the sequences
- The practical distribution and normal distribution should be very similar
- The appearance of "bumps" to the side of the distribution may indicate adapter dimers or another library bias
- A warning is given if the sum of the deviations represent $>15 \%$ of the reads
- A failure is given if the sum of the deviations represent $>30 \%$ of the reads

Per base \mathbf{N} content

Sequence Length Distribution

- Distribution of sequence lengths in whole dataset
- For Illumina, all sequences should be the same length
- After trimming (see trim_galore, later), this distribution may change

Sequence Duplication Levels

UNIVERSITEIT
TELLENBOSCH
UNIVERSITY
UNIVERSITY

- This plot shown a bin distribution, with an the number of sequences in each bin (blue line)
- Over-representation of sequences may to due to high sequence coverage, or contamination with lowcomplexity sequences
- Only the first 50 nt of the first 100,000 sequences in a file are analyzed
- The red line shown the "deduplicated" sequences - each duplicated sequence is counted only once in each bin
- The percentage of sequence remaining after "de-duplication" is given
- Warning: non-unique sequences make up >20\% of total
- Error: non-unique sequences make up >50\% of total

Overrepresented sequences

- The first 100,000 sequences in a file are scanned against the whole file
- A fit over 20 nt with at most one mismatch is a hit
- Hits are screened against a database of common contaminants, including adapter and primer sequences common for the given sequencing platform
- This identified contaminating sequences in the dataset can be removed by filtering the dataset
- Warning: Any one sequence representing $>0.1 \%$ of dataset
- Error: Any one sequence representing $>1 \%$ of dataset
universiteit Ellenbosch UNIVERSITY

Kmer Content

- The occurrence of each possible k-mer (7-mer) is determined at every position for 2% of the dataset
- The likelihood (p) of finding a specific k-mer at each position is calculated with a binomial distribution
- Top 6 over-represented k-mers shown
- Over-represented sub-sequences are not identified in duplicated sequences or per base content analysis
- Over-represented k -mers may be due to amplification of random primer sub-population

INIVERSITEIT ELLENBOS UNIVERSITY

- Welcome
- Introduction: ChIP-seq, NGS sequencing
- FASTQ file format
- Introduction to Galaxy
- Registering
- Get Data to Galaxy
- Histories

Tools Menu

- Quality Control: FastQC, Trim_galore
- Mapping: Bowtie2
- Visualizing mapped sequences: IGB
- Peak calling: MACS
- Visualizing peaks
- Computing on genomic intervals: some tools
- Identifying recognition sequences

Trim_galore

- Trim_galore is a wrapper in Galaxy for the Cutadapt program
- It is used to trim or remove reads
- Reads trimmed from 3^{\prime} end where Phred Q is below given value (default=20)
- Dataset is scanned for presence of adapter sequences at 3^{\prime} end
- The adapter sequences used can be auto-detected or defined as Illumina, Nextera etc.
- Adapter sequences are removed from the 3 ' end
- User can select how many adapter sequence nucleotides should be present below these are removed (default=1, very stringent)
- User can select to remove N bases from 5' end, or N bases from 3' end
- Remaining sequences less that cutoff length are removed (default<20)
- If dataset is paired-end, both reads will be removed if either is <20 to keep pairs matched in datasets

UNIVERSITEIT TELLENBOSCH
UNIVERSITY UNIVERSITY

Filter by quality (Galaxy tool)

- Reads are discarded if the median Q at a percentage of positions is less than a specified Q.

For example:
@CSHL_4_FCO42AGOOII:1:2:214:584
GACAATAAAC
+CSHL_4_FC042AGOOII:1:2:214:584
30303030303030302010 <- converted to integer for clarity
Using percent $=50$ and cut-off $=30$ - This read will not be discarded (the median quality is higher than 30).

Using percent = 90 and cut-off $=30$ - This read will be discarded (90% of the cycles do no have quality equal to / higher than 30).

Using percent $=100$ and cut-off $=20$ - This read will be discarded (not all cycles have quality equal to / higher than 20).

UNIVERSTEET university

- Welcome
- Introduction: ChIP-seq, NGS sequencing
- FASTQ file format
- Introduction to Galaxy
- Registering
- Get Data to Galaxy
- Histories
- Tools Menu
- Quality Control: FastQC, Trim_galore
- Mapping: Bowtie2
- Visualizing mapped sequences: IGB
- Peak calling: MACS
- Visualizing peaks
- Computing on genomic intervals: some tools
- Identifying recognition sequences

UNIVERSITEIT TELLENBOSC
UNIVERSITY

Burrows-Wheeler Algorithm (BWA)

- BWA is an algorithm that was originally used in data compression, because it identified repetitive sequence where only the identity of the first character and the number of times it repeats, need to be stored (run length encoding)
- It is based on a "rotating" permutation of a sequence such as GAATCAC (\$ is a character that does not occur anywhere else in the sequence):

Take last character
 in row, and place in first column in nex \dagger row. Shift all characters along by one block.

Burrows-Wheeler Algorithm (BWA)

- Sort the rotated matrix lexicographically. The character "\$" must have the highest priority

G	A	A			C	A	C	C	\$	Sort on first character
\$	G	A			T	C	A	A	C	
C	\$	G		A	A	T	C	C	A	
A	C	\$		G	A	A	T	T	C	
C	A	C		S	G	A	A	A	T	
T	C	A		C	\$	G	A	A	A	
A	T	C		A	C	\$	G	G	A	
A	A	T		C	A	C	\$	\$	G	

universiteit Burrows-Wheeler matrix

Reverse mapping: generating T from $\mathrm{BWT}(\mathrm{T})$

- The original sequence from which the $\operatorname{BWT}(T)$ has been derived, can be re-created from the $B W T(T)$.
- This can be demonstrated by giving each character a "rank", i.e., the number of identical characters already encountered in the same column

- The rows in M are sorted lexicographically
- The 3 A's in column 1 (circled) have identical priority values, and the rows are sorted according to the next character (green)
- In rotated rows where the circled A's are in the last column, the rows are sorted according to the same (green) characters, now in column 1 (orange).
- The rank of each A character is maintained, because they have the identical ranking priority, and the characters to the right (green/orange) is already sorted

Last-First (LF) mapping

- The LF Mapping principle: the $\mathrm{i}^{\text {th }}$ occurrence of a character A in the last column (L) has the same rank as the $\mathrm{i}^{\text {th }}$ occurrence of A in the first column (F)

1. Use first (F) and last (L) column indexing
2. Start with row 0 that will contain $\$$ in column F
3. C has rank 0 .
4. Move to $1^{\text {st }} \mathrm{C}$ in column F (row 4). It contains A 1 in column L
5. Move to A 1 in F (row 2). It contains C 1 in L .
6. Move to C1 (row 5). L contains T0.
7. Move to TO (row 7). L contain A2.
8. Move to A2 (row 3). L contains A0.
9. Move to AO (row 1). L contains GO.
10. Move to G0 (row 6). L contains \$ (end)

The starting sequence was GAATCAC
UNIVERSTITET
STELENRESCH
UNIVERSITY
Note that LF indexing generates the sequence in reverse

Finding patterns using a BWT and LF mapping

- We want to find the pattern ATC in a sequence

0	$\$$	G	A	A	T	C	A	C	0
1	A	A	T	C	A	C	$\$$	G	0
2	A	C	S	G	A	A	T	C	1
3	A	T	C	A	C	$\$$	G	A	0
4	C	S	G	A	A	T	C	A	1
5	C	A	C	S	G	A	A	T	0
6	G	A	A	T	C	A	C	$\$$	-
7	T	C	A	C	§	G	A	A	2

Start with the last character, C There are two occurrences of C C is preceded by $A 1$ or TO

0	$\$$	G	A	A	T	C	A	C	0
$\mathbf{1}$	A	A	T	C	A	C	S	G	0
$\mathbf{2}$	A	C	S	G	A	A	T	C	1
3	A	T	C	A	C	S	G	A	0
4	C	$\$$	G	A	A	T	C	A	1
$\mathbf{5}$	C	A	C	$\$$	G	A	A	T	0
6	G	A	A	T	C	A	C	$\$$	-
7	T	C	A	C	S	G	A	A	2

There is only 1 Tentry It is preceded by A2

0	\$	G	A	A	T	C	A	C	0
1	A	A	T	C	A	C	\$	G	0
2	A	C	\$	G	A	A	T	C	1
3	A	T	C	A	C	\$	G	A	0
4	C	\$	G	A	A	T	C	A	1
5	C	A	C	\$	G	A	A	T	0
6	G	A	A	T	C	A	C	\$	-
7	T	C	A	C	\$	G	A	A	2

We have found the pattern

What if the pattern does not occur in the sequence?
UINIVERSTTEIT ELLENBOSC university

Absent patterns

- We want to find the pattern TAT in a sequence

- If a pattern occurs more than once, we will have more than one possible row when we have moved to the $1^{\text {st }}$ character of the pattern
universiteit UNIVERSITY

Finding a matched pattern position in a sequence

- The "brute force" solution after finding the pattern is to continue with the sequence until you find the $\$$-- this is very inefficient though

0	$\$$	G	A	A	T	C	A	C	0
1	A	A	T	C	A	C	S	G	0
2	A	C	S	G	A	A	T	C	1
3	A	T	C	A	C	S	G	A	0
4	C	\$	G	A	A	T	C	A	1
5	C	A	C	S	G	A	A	T	0
6	G	A	A	T	C	A	C	$\$$	-
7	T	C	A	C	S	G	A	A	2

$$
\begin{aligned}
& \mathrm{A} 2 \rightarrow \mathrm{AO} \\
& \mathrm{~A} O \rightarrow \mathrm{GO} \\
& \mathrm{GO} \rightarrow \$ \\
& \therefore 2 \text { steps } \rightarrow \text { offset } 2 \text { from start } \\
& \text { GAATCAC }
\end{aligned}
$$

But what if it is a $1,000,000 \mathrm{bp}$ sequence?

Determining pattern position with a index

\$	G	A	A	T	C	A	C	7
A	A	T	C	A	C	\$	G	1
A	C	\$	G	A	A	T	C	5
A	T	C	A	C	\$	G	A	2
C	\$	G	A	A	T	C	A	6
C	A	C	\$	G	A	A	T	4
G	A	A	T	C	A	C	\$	0
T	C	A	C	\$	G	A	A	3

original row position in unsorted matrix also known as the "suffix array" (SA)

- We can see that the row starting with the ATC pattern was 2 rotations ($\mathrm{SA}=2$) from the original sequence start
- \therefore offset 2 from the sequence start
- However, we now have to store an integer list as long as the sequence itself \rightarrow not very memory efficient!
- What if we throw away part of the suffix array?

Finding an offset with a partial row index list

0	\$	G	A	A	T	C			0		
1	A	A	T	C	A	C	\$	G	0	1	1
2	A	C	\$	G	A	A	T	C	1		
3	A	T	C	A	C	5	G	A	0	0	
4	C	\$	G	A	A	T	C	A	1	16	6
5	C	A	C	\$	G	A	A	T	0		
6	G	A	A	T	C	A		\$	-		
7	T	C	A	C	\$	G			2		

- The row in which we have identified the pattern has no SA entry
- However, we can follow the rank $A 0$ to row 1
- Row 1 has a SA entry of 1
- Now, 1 step + SA of $1=2$ steps to start of sequence

FM-index

- The FM-index (proposed by Ferragina and Manzini) introduces another indexing scheme with performance improvements over the suffix array index
- It is based on the LF(i) mapping principle
- It uses 2 tables:
- C table
- Occ table
- The \mathbf{C} (character) table is really a table with the total number of characters with a lexicographic priority larger than a given character, i.e., the number of characters in the F (sorted) column above the first occurrence of a given character
- The Occ table is a table with the rank of each character in each row of the BWT(T)

INIVERSITEIT UNIVERSITY

The C(i) table

- The C(i) table gives the index of the first A, C, G etc. character in row F, i.e., the offset to the character "block"

The Occ(i) table

- The $\operatorname{Occ}(\mathrm{i})$ table gives the rank of a character, i.e., the offset to that character in its "block" in line F

This particular C is at offset 2
within the " C block"

UNIVERSITEIT UNIVERSITY

Use of the FM index to find patterns

Row number

- To find the sequence TAC, we simply calculate two pointers, start and end, from $C(i)$:
- Start $=C(" C$ " $)=4$; End $=C\left({ }^{(" C+1 ")}=C(" G ")=6\right.$
- C block ends 1 step before G block starts, $\therefore 6-1=\underline{5}$
- That points to " A " and " C " in L (red arrows)
- Only A matches the character in the search sequence
- This particular A is at:
- $C(" A ")+O c c(" A "$, row $)=1+2=3$
- The first character in Occ is index 1 not 0 , so the row number is one less: 3-1 = $\underline{2}$ (blue arrow)
- The preceding character is a " T "
- We have found the pattern without needing the F column
- I.e. we only need the $C(i)$ and $O c c(i)$ tables and the $B W T(T)$ column to search for patterns
- We can similarly discard part of the Occ table, and continue mapping until we do hit a checkpoint to determine the position of the pattern in our large sequence

The FM Index allows a small memory footprint

Components of the FM Index:
First column (F): ~ | $\Sigma \mid$ integers Last column (L): m characters SA sample: $m \cdot a$ integers, where a is fraction of rows kept Checkpoints: $m \times|\Sigma| \cdot b$ integers, where b is fraction of rows check-pointed

Example: DNA alphabet (2 bits per nucleotide), $\mathrm{T}=$ human genome, $a=1 / 32, b=1 / 128$

First column (F): 16 bytes
Last column (L): $\quad 2$ bits * 3 billion chars $=750 \mathrm{MB}$
SA sample: $\quad 3$ billion chars * 4 bytes/char $/ 32=\sim 400 \mathrm{MB}$
Checkpoints: $\quad 3$ billion * 4 bytes/char $/ 128=\sim 100 \mathrm{MB}$
Total < 1.5 GB
UNIVERSITEIT TELLENBOSC
UNIVERSITY

Bowtie 2

- Bowtie 2 is an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences.
- It is particularly good at aligning reads of about 50 up to 100 s or 1,000 s of characters to relatively long (e.g. mammalian) genomes.
- Bowtie 2 indexes the genome with an FM Index (based on the Burrows-Wheeler Transform or BWT) to keep its memory footprint small: for the human genome, its memory footprint is typically around 3.2 gigabytes of RAM.
- Bowtie 2 supports gapped, local, and paired-end alignment modes. Multiple processors can be used simultaneously to achieve greater alignment speed.
- Bowtie 2 outputs alignments in SAM format, enabling interoperation with a large number of other tools (e.g. SAMtools, GATK) that use SAM.

From the Bowtie2 manual

Briefly looking at command line Bowtie2

UNIVERSITEIT TELLENBOSC
UNIVERSITY UNIVERSITY

Bowtie2 modes

- The default alignment mode of Bowtie2 is end-to-end. Local alignment is also possible
- The performance/sensitivity setting can also be chosen:

```
--very-fast -D 5 -R 1 -N 0-L 22 -i S,0,2.50
--fast -D 10-R 2-N 0-L 22 -i S,0,2.50
--sensitive -D 15 -R 2 -L 22 -i S,1,1.15 (default in --end-to-end mode)
--very-sensitive -D 20 -R 3-N 0-L 20-i S,1,0.50
-D number of consecutive seed extension attempts that can "fail"
-R maximum number of times Bowtie 2 will "re-seed" reads
-N number of mismatches allowed in a seed alignment
-L length of the seed substrings to align
-i function governing the interval between seed substrings
    -i S,1,2.5 sets the interval function f to f(x)=1+2.5* sqrt(x)
    where }\textrm{x}\mathrm{ is the read length
```

- The default -sensitive mode is generally suitable for most alignments. Only change if you have a good reason to do so

Bowtie2 options

```
--n-ceil <func>
Sets a function governing the maximum number of ambiguous characters (usually Ns and/or .s)
allowed in a read as a function of read length. For instance, specifying -L,0,0.15 sets the N-ceiling
function f to f(x)=0+0.15* x}\mathrm{ , where }x\mathrm{ is the read length.
-I
The minimum fragment length for valid paired-end alignments.
```


-X

```
The maximum fragment length for valid paired-end alignments.
--fr/--rf/--ff
The upstream/downstream mate orientations for a valid paired-end alignment against the forward/reference strand.
```

NIVERSITEIT ELLENBOSC
INIVERSITY

Bowtie2 options

- Specify how Bowtie2 should treat alignment pairs that over-lap in different ways

--dovetail
If the mates "dovetail", that is if one mate alignment extends past the beginning of the other such that the wrong mate begins upstream, consider that to be concordant.
\section*{--no-contain}
If one mate alignment contains the other, consider that to be non-concordant.
--no-overlap
If one mate alignment overlaps the other at all, consider that to be non-concordant.

Alignment reporting

- Bowtie2 will report the best alignment of all alignments found that passes the selection criteria
- If there are several equal "best" alignments, Bowtie will randomly report one

Options

- - k <int> Bowtie will report up to <int> number of alignments for each query sequence, of which some will be poorer, "secondary" alignments
- -a like -k, but there is no upper limit on the number or alignments searched for

Bowtie2 outputs

```
10000 reads; of these:
    10000 (100.00%) were paired; of these:
        6 5 0 ~ ( 6 . 5 0 \% ) ~ a l i g n e d ~ c o n c o r d a n t l y ~ 0 ~ t i m e s ~
        823 (88.23%) aligned concordantly exactly 1 time
        527 (5.27%) aligned concordantly >1 times
        ---
        6 5 0 \text { pairs aligned concordantly 0 times; of these:}
            34 (5.23%) aligned discordantly 1 time
        ---
        6 1 6 ~ p a i r s ~ a l i g n e d ~ 0 ~ t i m e s ~ c o n c o r d a n t l y ~ o r ~ d i s c o r d a n t l y ; ~ o f ~ t h e s e :
            1232 mates make up the pairs; of these:
                660 (53.57%) aligned 0 times
                571 (46.35%) aligned exactly 1 time
                1 (0.08%) aligned >1 times
96.70% overall alignment rate
```

INIVERSITEIT UNIVERSITY

SAM file format

A SAM format file is a text file composed of header lines, and sequence lines The header lines (if present) are preceded by ‘@’ and a two character code such as @HD (header line), @SQ (Reference sequence dictionary) etc.

The rest of the file is composed of "sequence lines", one after the other. Each sequence line is composed of 11 tab delimited fields:

1 QNAME (Query template NAME)
2 FLAG (bitwise FLAG)
3 RNAME (Reference sequence NAME)
4 POS (1-based leftmost mapping POSition)
5 MAPQ (MAPping Quality)
6 CIGAR (CIGAR string)
7 RNEXT (Ref. name of the mate/next read)
8 PNEXT (Position of the mate/next read)
9 TLEN (observed Template LENgth)
10 SEQ (segment SEQuence)
11 QUAL (Phred-scaled base QUALity+33) See the SAM file format specification

IINIVERSITEIT
tellenbosch
UNIVERSITY

Sequence string example

\(\left.\begin{array}{llll}1 \& QNAME \& HWI-ST193:439:D16G8ACXX:4:1101:2568:2202

2 \& FLAG \& 99 \&

3 \& RNAME \& Tb427_11_01_v4 \&

4 \& POS \& 462830 \& Q = - 10 \log 10 p, where p is an estimate of the

5 \& MAPQ \& 49 \& probability that the alignment does not

6 \& CIGAR \& 50 M \& correspond to the read's true point of origin

7 \& RNEXT \& = \& i.e. 49 \rightarrow 10^{\frac{-49}{10}}=10^{-4.9} \sim 0.00001

8 \& PNEXT \& 462931 \&

9 \& TLEN \& 151 \&

10 \& SEQ \& TGGCTGCATCCTCTTTGCCCAGTTCCTTTGCATCATCATCAGCTGTGGGA

11 \& QUAL \& Q@<DFFBBHHHBF@FDGGGGGGEHHIDG@EGAEAGGIIIIFHHHHGG3DH

12 \& YT:Z:UP

13 \& YF:Z:NS\end{array}\right]\)	All optional fields follow the TAG:TYPE:VALUE

SAM bitwise flag

Bit	0	1	2	3	4	5	6	7	8	9	10
Value	1	2	4	8	16	32	64	128	256	512	1024

Selecting $767=256+512$, and therefore selects bits 8 and 9
1 The read is one of a pair
2 The alignment is one end of a proper paired-end alignment
4 The read has no reported alignments
8 The read is one of a pair and has no reported alignments
16 The alignment is to the reverse reference strand
32 The other mate in the paired-end alignment is aligned to the reverse reference strand
64 The read is mate 1 in a pair You will only get secondary alignments
128 The read is mate 2 in a pair if you run Bowtie2 with the -k option
256 Secondary alignment \qquad
512 Not passing filters, such as platform/vendor quality controls
1024 PCR or optical duplicate 2048 0×800 supplementary alignment
You can use these flags to remove poorly mapped reads from your dataset
universiteit ELLENBOSCH UNIVERSITY

Filter mapped reads by MAPQ

- Samtools is a suite of programs for interacting with high-throughput sequencing data
- SAMtools is composed of many, many individual tools (see the manual)
- SAMtools can be run as a command line tool (on Linux) or is available as individual tools in Galaxy
- A useful tool to filter mapped entries in a SAM/BAM file in terms of a cut-off MAPQ score is:

```
samtools view [options] in.sam|in.bam|in.cram [region...]
```

with option -q <int>	Skip alignments with MAPQ < int
with option -f <value>	only write sequence reads with the bits set in value (must be hex format $0 x . .) ~ t h a t ~ i s ~ a l s o ~ s e t ~ i n ~ t h e ~ F L A G ~ v a l u e ~ o f ~ t h e ~ r e a d ~$.
example -f	

See SAMtools:Filter SAM or BAM
UNIVERSITEII TELLENBOSC
UNIVERSITY

Samtools:Filestat to see details of mapped reads

```
3679873 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 secondary
0 + 0 supplementary
0 + 0 duplicates
3679873 + 0 mapped (100.00%:-nan%)
3679873 + 0 paired in sequencing
1848347 + 0 read1
1831526 + 0 read2
3643874 + 0 properly paired (99.02%:-nan%)
3656927 + 0 with itself and mate mapped
22946 + 0 singletons (0.62%:-nan%)
405 + 0 with mate mapped to a different chr
405 + 0 with mate mapped to a different chr (mapQ>=5)
```


See Samtools:Filestat

UNIVERSITEIT ELLENBOSCH
UNIVERSITY UNIVERSITY

BAM format files

- A BAM format file is a compressed SAM file
- BAM and SAM format files can be interconverted with SAMtools
- BGZF, a variant of gzip, is used to generate a BAM file
- In a BAM file blocks are stored which can be quickly with an index
- The BAM index file is a BAI file
- Tools that can visualize BAM files (such as Genome Browsers) require the BAI file
- A BAI file can be regenerated from a BAM file

Visualize mapped reads in IGB

Finding peaks in mapped datasets: MACS

MACS: 4 steps

- removing redundant reads
- adjusting read position
- calculating peak enrichment
- estimating the empirical false discovery rate (FDR)

UNIVERSITEIT
STEILENBOSCH TELLENBOSCH
UNIVERSITY

MACS: How to find peaks of enrichment

UNIVERSITEIT UNIVERSITY

Use a Poisson distribution to define peaks

The Poisson distribution

Poisson distribution:

$$
\mathrm{p}(\mathrm{X} \leq \mathrm{k})=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

p : probability mass function
λ : average rate of an occurrence in a given interval
k : the number of occurrences tested for
Ex: 2 goals on average per match.
Chance of 4 goals in a match?
A Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and independently of the time since the last event
UNIVERSITEIT
STEILENBOSCH TELLENBOSC
UNIVERSITY

Poisson distribution is linearly proportional over an interval

This means that if the possibility of something occurring over length $x=p$, the chance of it occurring over $2 x=2 p$ The possibility of two different observations in the same interval is additive, i.e.:
At a given λ, the chance of making one observation ($k=1$) or two observations $(k=2)$ is
$\frac{\lambda^{1} e^{-\lambda}}{1}+\frac{\lambda^{2} e^{-\lambda}}{2}$

Or, in the general case:
$\sum_{k=1}^{N} \frac{\lambda^{k} e^{-\lambda}}{k!}$
The chance of making more than N observations would be:
$1-\left[\frac{\lambda^{0} e^{-\lambda}}{1}+\frac{\lambda^{1} e^{-\lambda}}{1}+\frac{\lambda^{2} e^{-\lambda}}{2}\right]$
Or, in the general case:
$1-\sum_{k=0}^{N} \frac{\lambda^{k} e^{-\lambda}}{k!}$

Applying the Poisson distribution to NGS data

```
Read_size = 36bp
Mapped_reads = 30,000,000
Alignable_genome_size = 2,700,000,000
\lambda=(36\times30000000)/2700000000=0.4
At this }\lambda\mathrm{ (mapping coverage), the chance of
hitting a tag at any sequence position is, on
average, is 4 times in 10
What is the chance hitting 2 tags?
P}=\frac{\mp@subsup{\lambda}{}{k}\mp@subsup{e}{}{-\lambda}}{k!
= 0.42\mp@subsup{e}{}{-0.4}
= 0.077
- As default MACS defines a peak at \(p<10^{-5}\)
```

NIVERSITEIT
UNIVERSITY

Table 1
From the following article
PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls
Joel Rozowsky, Ghia Euskirchen, Raymond K Auerbach, Zhengdong D Zhang, Theodore Gibson, Robert Bjornson, Nicholas Carriero, Michael Snyder \& Mark B Gerstein Nature Biotechnology 27, 66-75 (2009) Published online: 4 January 2009 doi: $10.1038 / n b t .1518$

Table 1. Genome mappability fraction

- Figures and tables index

Organism	Genome size (Mb)	Nonrepetitive sequence		Mappable sequence	
		Size (Mb)	Percentage	Size (Mb)	Percentage
Caenorhabditis elegans	100.28	87.01	86.8\%	93.26	93.0\%
Drosophila melanogaster	168.74	117.45	69.6\%	121.40	71.9\%
Mus musculus	2,654.91	1,438.61	54.2\%	2,150.57	81.0\%
Homo sapiens	3,080.44	1,462.69	47.5\%	2,451.96	79.6\%

For four common model organisms-worm, fruit fly, mouse and human-we have determined the fraction of each genome sequence that is nonrepetitive as well as the fraction that is mappable using 30 -nt sequence tags. The genome coverage achievable from genomic tiling arrays corresponds to the
nonrepetitive fraction of a genome whereas the mappable coverage is what is achievable by tag-based sequencing approaches. We also determined that as the length of the sequence tags is increased beyond 30 , the number of nucleotides in the genomes that are uniquely mappable is $2,452 \mathrm{Mb}(79.6 \%)$ for 30 nt reads, $2,586 \mathrm{Mb}(84.0 \%$) for $40 \mathrm{nt}, 2,669 \mathrm{Mb}(86.7 \%)$ for $50 \mathrm{nt}, 2,720 \mathrm{Mb}(88.3 \%)$ for 60 nt and $2,750 \mathrm{Mb}(89.3 \%)$ for 70 nt .

Calculating the significance of a peak

30 tags $\times 2 b p=60 b p$
Genome size $=50$ bp
λ (chance of a base being covered) $=\frac{60}{50}=1.2$
Say d=10bp
In 10bp window, $\mathrm{k}=4\left(\frac{20 \mathrm{tags} \times 2 \mathrm{bp}}{10 \mathrm{bp}}\right)$
$\mathrm{p}=\frac{\lambda^{k} e^{-\lambda}}{k!}=\frac{1.2^{4} e^{-1.2}}{4 \times 3 \times 2 \times 1}=0.026$

How MACS treat SE and PE samples

- Single end (SE) reads gives Watson and Crick strand reads
- MACS identify W+C peak pairs within a sliding window of 2×sonication size
- d is calculated
- Peak center defined at midpoint
- All tags in identified peak shifted by $\frac{d}{2}$ to 3^{\prime} end

MACS: what the program does
control

sample

- MACS scales number of tags in sample = number of tags in control
- Scaling can be set to be up (control \rightarrow tag) or down (tag \rightarrow control)
- Remove duplicates (PCR bias). No need for SAMtools > RmDup
- MACS shift $2 d$ window along genome to find significant peaks ($p \leq 10^{-5}$) using $\lambda_{B G}$ (entire sample)
- The Summit of the peak is the position in the identified peak with the highest number of tags
- If there is a control, MACS uses $\lambda_{\text {local }}$ instead of $\lambda_{\text {BG }}$
- $\lambda_{\text {local }}$ corrects for local chromatin structure, PCR amplification, sequencing bias and genome copy number variation
- MACS calculates $\lambda_{\text {local }}=\max \left(\lambda_{\text {BG }}, \lambda_{1 k}, \lambda_{5 \mathrm{k}}, \lambda_{10 \mathrm{k}}\right)$
- Thus λ is calculated in $1 \mathrm{~kb}, 5 \mathrm{~kb}$ and 10 kb windows centered on identified peaks
- FDR is calculated by identical procedure, but swapping sample and control samples (default q fold <0.05)

$$
\text { Fold_enrichment }=\frac{\text { unit density of tags in the identified peak }\left(p<10^{-5}\right)}{\text { unit density of the control }(=\lambda)}
$$

UNIVERSITEIT
STELLENBOSCH
UNIVERSITY
UNIVERSITY

BED (Browser Extensible Data) format

```
Format used by Genome Browsers to display tracks
Text file with tab delimited columns
Required fields:
chrom - The name of the chromosome (e.g. chr3, chrY, chr2_random)
chromStart - The starting position of the feature
chromEnd - The ending position of the feature in the
9 optional fields:
Name, score, strand, thickStart, thickEnd, itemRgb, blockCount, blockSizes, blockStarts
Headers lines provide information and instructions to browser:
```

```
browser position chr7:127471196-127495720
```

browser position chr7:127471196-127495720
track name="ItemRGBDemo" description="Item RGB demonstration" visibility=2 itemRgb="On"
track name="ItemRGBDemo" description="Item RGB demonstration" visibility=2 itemRgb="On"
chr7 127471196 127472363 Pos1 0 + 127471196 127472363 255,0,0
chr7 127471196 127472363 Pos1 0 + 127471196 127472363 255,0,0
chr7 127472363 127473530 Pos2 0 + 127472363 127473530 255,0,0
chr7 127472363 127473530 Pos2 0 + 127472363 127473530 255,0,0
chr7 127473530 127474697 Pos3 0 + 127473530 127474697 255,0,0

```
chr7 127473530 127474697 Pos3 0 + 127473530 127474697 255,0,0
```

Files are typically very large
Rather use bigBED format, which only uploads the part of the file that is needed by the browser, to the browser server You can convert BED -> bigBED files in Galaxy: Convert Formats > BED-to-bigBED converter

INIVERSITEIT

bedGraph format

- The bedGraph format allows display of continuous-valued data in track format
- Useful for probability scores and transcriptome data
- The bedGraph format is line-oriented
- Bedgraph data are preceded by a track definition line (no line breaks), which adds a number of options for controlling the default display of this track
- The bedGraph format has four columns of data:
chrom chromStart chromEnd dataValue

```
browser position chr19:49302001-49304701
browser hide all
browser pack refGene encodeRegions
browser full altGraph
track type=bedGraph name="BedGraph Format" description="BedGraph format" visibility=full color=200,100,0
altColor=0,100,200 priority=20
chr19 49302000 49302300 -1.0
chr19 49302300 49302600-0.75
chr19 49302600 49302900-0.50
```

universiteit
Ellenbosch
UNIVERSITY

WIG (wiggle) format

The wiggle (WIG) format is an older format for displaying dense, continuous data such as GC percent, probability scores, etc.
WIG data is lossy: it is compressed and stored internally in 128 unique bins. If you export WIG data from a browser in tabular format, it is not the same as in the original WIG file Wiggle format is line-oriented.
The first line must be a track definition line (i.e., track type=wiggle_0)with additional options for controlling the display (no line breaks).
WIG data can be variableStep or fixedStep
browser position chr19:49304200-49310700
track type=wiggle_0 name="variableStep" description="variableStep format" visibility=full autoScale=off
viewLimits $=0.0: 25.0$ color $=50,150,255$ yLineMark $=11.76$ yLineOnOff=on priority=10
variableStep chrom=chr19 span=150
4930470110.0
4930490112.5
4930540115.0

```
fixedStep chrom=chrN start=position step=stepInterval [span=windowSize]
dataValue1
```

dataValue2

Program

- Welcome
- Introduction: ChIP-seq, NGS sequencing
- FASTQ file format
- Introduction to Galaxy
- Registering
- Get Data to Galaxy
- Histories
- Tools Menu
- Quality Control: FastQC, Trim_galore
- Mapping: Bowtie2
- Visualizing mapped sequences: IGB
- Peak calling: MACS
- Visualizing peaks
- Computing on genomic intervals: some tools
- Identifying recognition sequences

UNIVERSITEIT
STEllenbosch
university

Load bedGraph files into IGB

INIVERSITEIT
UNIVERSITY

Program

- Welcome
- Introduction: ChIP-seq, NGS sequencing
- FASTQ file format
- Introduction to Galaxy
- Registering
- Get Data to Galaxy
- Histories
- Tools Menu
- Quality Control: FastQC, Trim_galore
- Mapping: Bowtie2
- Visualizing mapped sequences: IGB
- Peak calling: MACS
- Visualizing peaks
- Computing on genomic intervals: some tools
- Identifying recognition sequences

Select 200bp fragments centered on peaks identified by MACS

- Text manipulation>Compute
- Text manipulation>Cut
- Edit attributes -> Change from "tabular" to "interval"
- Fetch alignments/sequences>Extract genomic DNA
- Motif search>MEME
- MEME currently broken on usegalaxy.org
- See: http://meme-suite.org

Program

[^0]UNIVERSITEIT STELLENBOSCH
UNIVERSITY

The MEME suite webpage

Maintenance and development of the MEME Suite is funded by grant R01 GM103544 from the National Institutes of Health.

The MEME Suite web portal also receives support from Amazon and Google.

Upload datafiles to MEME web server

Output from MEME

INIVERSTTETT
ELLENbosch

Tomtom provides matches to selected database

[^0]: - Welcome
 - Introduction: ChIP-seq, NGS sequencing
 - FASTQ file format
 - Introduction to Galaxy
 - Registering
 - Get Data to Galaxy
 - Histories
 - Tools Menu
 - Quality Control: FastQC, Trim_galore
 - Mapping: Bowtie2
 - Visualizing mapped sequences: IGB
 - Peak calling: MACS
 - Visualizing peaks
 - Computing on genomic intervals: some tools
 - Identifying recognition sequences

