Department of Biochemistry Stellenbosch University

Project portfolio 2018-2020

SCIENCE NATUURWETENSKAPPE EYOBUNZULULWAZI

ENZYME KINETICS FOR SYSTEMS BIOLOGY

Project leader Prof Johann Rohwer jr@sun.ac.za

HIGHLIGHTS

- We construct kinetic models of metabolic pathways
- This requires enzyme kinetic parameters determined under realistic cellular conditions
- We have developed a high throughput method using NMR spectroscopy
- Using this, we can easily investigate effects of e.g. pH or macromolecular crowding

- Kinetic models help us better understand emergent properties of complex cellular systems
- They can assist in drug discovery, biotechnology, crop improvement

MATHEMATICAL MODELLING TOOLS JWS ONLINE

HIGHLIGHTS

Project leaders Prof Jacky Snoep & Dr Dawie van Niekerk jls@sun.ac.za

- Curated open-access database of published models of metabolism, signal transduction, disease, pharmacology and epidemiology
- Browser-based simulation and manipulation of models
- International collaboration with journals on published models
- Part of FAIRDOM Association for Findable, Accessible, Interoperable, and Re-usable research (fair-dom.org)

- Model builder and simulation tools for research and teaching
- Simulation database for one-click figure reproduction
- Technical curation of models during peer review process

METABOLIC MODELLING YEAST GLYCOLYTIC OSCILLATIONS

Project leaders Dr Dawie van Niekerk & Prof Jacky Snoep ddvniekerk@sun.ac.za

HIGHLIGHTS

- Constructed and validated detailed mathematical models of glycolysis during oscillations
- Predicted and confirmed oscillation-features in single cells
- Gaining a mechanistic understanding of phase shifts and synchronization in populations of cells

APPLICATION OF RESEARCH

Broadened understanding of oscillation characteristics and communication and synchronization phenomena in biological oscillators

MODELLING CELLULAR NETWORKS REDOXIN

HIGHLIGHTS

- Studying the importance of redoxin networks in regulation, antioxidant defence and signalling
- Developing quantitative measures for describing these networks in computational models
- Constructing new models, e.g. for *E. coli* and *M. tuberculosis*
- Comparing these networks, e.g. between host and pathogen

Redoxin networks display complex inter-connectivity with multiple interacting loops

APPLICATION OF RESEARCH

- Redoxin networks contribute to health and disease
- A thorough quantitative description of their regulation may assist the development of intervention strategies for combatting disease

Project leader Prof Johann Rohwer jr@sun.ac.za

MECHANISTIC MODELLING THE BIOCHEMISTRY OF DISEASE

Project leaders Prof Jacky Snoep & Dr Dawie van Niekerk jls@sun.ac.za

HIGHLIGHTS

- Constructed a detailed model of glycolysis in the malaria parasite and glucose homeostasis in the malaria-infected human
- Characterising kinetics of insulin signalling and glucose metabolism in type 2 diabetes
- Elucidating cholesterol metabolism in Mycobacterium tuberculosis
- Investigating dynamics in models of HIV disease progression

APPLICATION OF RESEARCH

Drug target identification in malaria and TB

Mechanistic understanding of disease pathophysiology and progression

DISEASE MODELLING LINKING DISEASE TO PHARMACOLOGY AND EPIDEMIOLOGY

Project leaders Dr Dawie van Niekerk & Prof Jacky Snoep ddvniekerk@sun.ac.za

HIGHLIGHTS

- Linking models of personal health and pharmacology to epidemiology (public health)
- Prediction of disease progression upon drug intervention
- Investigating clinical features and epidemiology as a result of patient heterogeneity and drug regimens

- Mechanistic understanding of drug side effects and efficacy
- Informing strategies for public health

PROGESTINS AND CANCER

ROLE OF STEROID RECEPTOR CROSSTALK

Project Leader Prof. Donita Africander drho@sun.ac.za

HIGHLIGHTS

- Hormone therapy (HT) is prescribed to relieve symptoms of menopause.
 Estrogens and progestins used in HT have been associated with increased breast cancer risk.
- Interplay between several steroid receptors (SRs), to which these hormones bind, have been implicated in breast cancer pathogenesis.
- We showed that the SR mediated effects of progestins often differ from one another and natural progesterone, suggesting that not all hormones used in HT may increase breast cancer development.

- Aid in the design of new HTs that would alleviate menopausal symptoms without increasing breast cancer risk.
- The outcome of this study may influence the current implementation of health practices in South Africa.

ADRENAL SEX STEROIDS

THE IDENTIFICATION IN DISEASE STATES

HIGHLIGHTS

Project leader Prof Amanda C Swart acswart@sun.ac.za

- C11-oxy adrenal steroids drive disease development/progression.
- C11-oxy androgens and progesterones contribute to adrenal hyperplasia, polycystic ovary syndrome, prostate cancer, etc.
- In vitro cell models are utilized to investigate integrated steroid production and metabolism.
- UPC²-MS/MS enables comprehensive & accurate steroid evaluation in tissue and blood establishing steroid fingerprint profiles.

- Steroid fingerprinting identifying steroids as biomarkers in various disease states
- Drug targets enzymes in metabolic pathways can be identified as drug targets

11-OXYGENATED ANDROGENS IN HEALTH AND DISEASE

HIGHLIGHTS

Project leader Dr Karl Storbeck storbeck@sun.ac.za

- Adrenal 11β-hydroxyandrostenedione (110HA4) was previously written off as a dead end product.
- Recent studies have shown that 110HA4 is the precursor to novel 11oxygenated androgens (e.g. 11-ketodihydrotestosterone)
- 11-oxygenated androgens are as potent as classical androgens.

APPLICATION OF RESEARCH

11-oxygenated androgens have recently been implicated in disease states including Castration Resistant Prostate Cancer (CRPC), Polycystic Ovary Syndrome (PCOS) and Congenital Adrenal Hyperplasia (CAH).

GLUCOCORTICOIDS AND CYTOKINES IMPLICATIONS IN INSULIN RESISTANCE

Project leader Dr Nicky JD Verhoog nverhoog@sun.ac.za

HIGHLIGHTS

- Investigating the role glucocorticoids together with cytokines (inflammation) have on developing insulin resistance
- These classic antagonists (GCs & inflammatory mediators) both negatively affect insulin signalling
- This project identified a possible role PAI-1, a Type 2 diabetes biomarker and upregulated by both GCs & inflammatory mediators, in insulin signalling

- This project aims to better understand the non-communicable disease Type 2 diabetes as a result of insulin resistance
- This research could contribute to designing better drugs for treating Type 2 diabetes or insulin resistance

GLUCOCORTICOID RECEPTOR

THE IMPORTANCE OF BEING DIMERIZED

Project leader Prof Ann Louw al@sun.ac.za

HIGHLIGHTS

- CpdA, unlike other glucocorticoid drugs, abrogates GR dimerization
- Loss of dimerization:
 - Correlates with SEGRM activity which maintains antiinflammatory activity while reducing side-effects
 - Correlates with loss of autologous down-regulation which maintains glucocorticoid sensitivity

- Understanding of the implications GR dimerization could aid the search for anti-inflammatory drugs that
 - > display less side-effects
 - have a reduced risk for glucocorticoid resistance

UPSFC-MS/MS

ULTRA-PERFORMANCE SUPERCRITICAL FLUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY OF STEROIDS

Project leader Dr Karl Storbeck storbeck@sun.ac.za

HIGHLIGHTS

- UPSFC-MS/MS combines the strengths of both GC-MS and UHPLC-MS/MS.
- UPSFC-MS/MS offers orthogonal selectivity and increased chromatographic efficiency.
- High throughput methods for the separation and quantification of multiple structurally similar steroids have been developed.

- UPSFC-MS/MS has broad application in analysis of pesticides, environmental toxins and pharmaceuticals
- Ideal for the separation and quantification of steroids for
 - application in steroid-dependent disease diagnosis
 - identifying anabolic steroid abuse in sport

ROOIBOS TEA A FUNCTIONAL FOOD

Project leader Prof Amanda C Swart acswart@sun.ac.za

HIGHLIGHTS

- In-laboratory extraction and UPLC-MS/MS analysis of Rooibos polyphenols.
- In cell models: Rooibos modulates steroidogenic enzymes, reducing the stress hormone, cortisol.
- Aqueous Rooibos extracts influences the immune response.
- Rooibos reduces pro-inflammatory cytokines, while increasing antiinflammatory cytokines.

Analysis of flavonoids extracted from Rooibos leaves using ultra-performance liquid chromatography tandem mass spectrometry at the Central Analytical Facility, Stellenbosch University.

presence of Rooibos methanolic extracts in the CHO-K1 cell model system. Steroid substrate, 1 µM; extract, 1 mg/mL; after 24 hours. Pro-inflammatory analysis Anti-inflammatory analysis

control rats/placebo rats + Rooibos IL-6 production IL-6 inhibition

Immunohistochemical analysis of rat adrenal tissue: rats fed Rooibos had 1.6 fold lower IL-6 levels compared to

rats + Rooibos

IL-10 stimulation

APPLICATION OF RESEARCH

control rats, while IL-10 levels were significantly higher (2.4 fold).

- Rooibos may act as therapeutic agent for patients suffering from anxiety & the metabolic syndrome.
- Rooibos is a natural food additive with nutraceutical aspects.

HONEYBUSH TEA MORE THAN A CUP OF TEA

Project leader Prof Ann Louw al@sun.ac.za

HIGHLIGHTS

- Honeybush tea (Cyclopia) extracts have phytoestrogenic potential
- Benchmarking suggests comparable potency and efficacy to commercial phytoestrogen extracts for menopausal use
- ER subtype specific effects reduces risk profile in rats
- Breast cancer chemo-preventative properties in rats

- Cyclopia extracts have potential as marketable phytoestrogenic nutraceuticals for women's health:
 - Relief of Menopausal symptoms
 - Chemo-prevention of breast cancer

NATURE'S ANTIBIOTICS

BIOMINING IN THE ENVIRONMENTAL PHARMACY

Project leader Prof Marina Rautenbach mra@sun.ac.za

HIGHLIGHTS

- The environmental microbiome holds a pharmacy of novel antibiotics that can to combat the disastrous rise in antibiotic resistance
- High throughput assays combining antimicrobial activity and advanced mass spectrometry are used to identify bacterial producers and their products with anti-biofilm, -fungal and -bacterial activity
- Optimised microbial production and isolation procedures are used to obtain enough of the antibiotic compound for characterisation and development.

New antimicrobial compounds can be developed into:

- anti-fungal/anti-bacterial creams and dressings
 antibiotics and last resort drugs for systemic infections
- preservatives and biocides for industrial use

TYROCIDINES POTENTIAL ANTIBIOTICS AND DRUGS

HIGHLIGHTS

Project leader Prof Marina Rautenbach mra@sun.ac.za

- Cyclic non-ribosomal antimicrobial peptides are regarded as a new antibiotic class with a very low potential for resistance
- The cyclic tyrocidines (Trcs) from *Brevibacillus parabrevis* have a broad spectrum of anti-bacterial, -fungal, -malarial and -cancer activity
- Selective activity against fungi is significantly improved in dextran formulations of Trcs
- Designer nanoparticles and micelles with Trcs have high selective activity against malaria parasites and certain cancers

- The Trcs can be developed into health products:
 - > anti-fungal/anti-bacterial creams and dressings
 - Selective chemotherapeutic drug against cancers
 - selective last resort drug against malaria

PANTOTHENATE ANALOGUES AS NOVEL ANTIMALARIALS

Project leader Dr. Marianne de Villiers mdevilliers@sun.ac.za

HIGHLIGHTS

- Pantothenamides (PanAms) have potent antiplasmodial activity in vivo with similar activity as the known antimalarial chloroquine
- PanAms target CoA metabolism overall; the specific point of inhibition is still unknown
- Mode of action studies are currently conducted in malaria causing parasites like *Plasmodium falciparum*

- PanAms are being investigated as possible new antimalarials by MMV as part of a MMV-supported projects
- These scaffolds from these compounds might be useful as agents against other diseases

ANTIMICROBIAL DRUGS TARGETING COA BIOSYNTHESIS

Project leader Prof. Erick Strauss estrauss@sun.ac.za

HIGHLIGHTS

- Developing new antistaphylococcal agents
- Discovery of new compounds that can be used as tools for the elucidation of key biological processes
- Developing new analytical tools to study CoA-dependent biology
- Discovering new was to improve cell-permeability

- New antimicrobials for treatment of hospital-acquired infections caused by Staphylococcus aureus
- Furthering our understanding of the role of important cofactors in bacterial physiology

BACK TO NATURE ANTIMICROBIAL PEPTIDES FROM SOIL BACTERIA

Project leader Prof Marina Rautenbach mra@sun.ac.za

HIGHLIGHTS

- Non-ribosomal antimicrobial peptides (AMPs) from soil bacteria can be readily identified, produced and isolated at low cost
- The cyclic tyrocidines (Trcs) from *Brevibacillus parabrevis* have a broad spectrum of antibacterial and antifungal activity
- Trcs protect an stimulate growth of micro-propagated plants from grafts, cuttings and seeds (Patent registered: WO/2013/150394)
- Trcs have potent sterilisation activity in/on paper and a variety of polymers (Patent: PCT/IB2015/054166, WO registration pending)

APPLICATION OF RESEARCH

Biodegradable cyclic AMPs can be utilised as

PEPTIDE GROUP

- > as green biocides in agriculture
- > as preservatives in food, beverages, cosmetics etc.
- For producing sterilising biodegradable packaging and filters

OSTRICH PATHOGENS DETECTION & CONTROL

Project leader Dr Annelise Botes annelise@sun.ac.za

HIGHLIGHTS

- Focus on disease causing organisms that impact production
- Determine the development of gut microbiome in chicks
- **Development of tools for pathogen detection**
- **DNA-vaccines development and evaluation in field trials**

conditions

Samples are taken

from GIT sections **Tool development**

- **ELISA**
- Secondary anti-ostrich antibodies
- Recombinant production of proteins
- PCR assays

Gastrointestinal tract infections

- Cause of deaths amongst intensively farmed chicks receiving high-concentrate feed
- Treated using antibiotics
- Determine change in GIT microbiome using next generation sequencing

Mycoplasma

- Bacterial infections
- 3 ostrich-specific species identified
- Causes reduced production and downgrading of carcasses
- Treated using antibiotics
- DNA vaccine development to control infections - requires genomic information

Mycoplasma associated with respiratory symptoms

Foam in eye followed by infection

Yellow lesions on carcass

- Establish dietary intervention and husbandry practices to control and prevent infections
- Optimal disease management, reduced antibiotic use and subsequent improved food safety

RNA VIRUS DETECTION POTATO PATHOGENS

Project leader Prof Dirk Bellstedt dub@sun.ac.za

HIGHLIGHTS

- Methods were developed for detection of *Ralstonia solanacearum*, Potato Virus Y (PVY) and Potato Leaf Roll Virus (PLRV)
- Unique variants of PVY and PLRV documented in South Africa
- Book chapters published in world authoritative books

Symptoms of Potato Leaf Roll Virus infection Dramatic yield reduction due to infection

Determine RNA sequences of whole viruses

✔
 Identify
 conserved
 regions to
 develop specific
 primers
 ↓

Develop realtime PCR methods for detection

- ELISA method for *Ralstonia* detection used for testing of all South Africa seed potatoes since 1991
- More pathogenic PVY and PLRV variants identified, PCR detection methods developed for use in Sandveld Region, South Africa

PLANT MOLECULAR SYSTEMATICS GENUS ERICA

Project leader Prof Dirk Bellstedt dub@sun.ac.za

HIGHLIGHTS

- Major advances in DNA sequencing technology has enabled us to determine phylogenetic relationships using bioinformatic methods
- This has enabled us to make major advances in plant classification and Biogeography in Cape plant groups

APPLICATION OF RESEARCH

Documents South African plant diversity in detail, when it diversified, how many species, where did it come from and when, important for conservation

EPIGENOMIC LANDSCAPE

Trypanosoma brucei

Project leader Prof Hugh Patterton hpatterton@sun.ac.za

HIGHLIGHTS

- We have performed MNase-seq to identify the positions of all nucleosomes in the genomes of bloodstream and insect life stage forms of *T. brucei*
- Specialized software developed to analyse average structures at specified genomic loci
- Differences identified in the organization of chromatin in *T. brucei* and higher eukaryotes
- Specialized chromatin structures identified bordering the silent VSG cassettes, the source of sequences that allow *T. brucei* to escape immune clearance in humans

- Novel software suitable for analysis of epigenetic data
- Identification of targets for development of epigenetic therapies to African sleeping sickness

EPIGENETIC SIGNALS IMPLICATION IN LIFESPAN EXTENSION

Project leader Prof Hugh Patterton hpatterton@sun.ac.za

HIGHLIGHTS

- We have cultured a mixture of strains from a bar-coded histone mutant library of Saccharomyces cerevisiae, and identified long and short lifespan mutants
- Mutants that lived longer invariably exhibited mutations of residues on the solvent-exposed disk of the nucleosome
- Mutants that exhibit shortened lifespans exhibited mutations in the histone-fold region of the protein, possibly involved in destabilization of the nucleosome structure
- The transcriptomic and proteomic profiles of lifespan mutants were investigated

- Links epigenetic signals to lifespan
- Proteome and transcriptome changes provides further insight into diseases of aging

SCIENCE NATUURWETENSKAPPE EYOBUNZULULWAZI