Automated volumetric measurement of truck loads through multiview photogrammetry and 3D reconstruction software

> Mauricio Acuna AFORA, USC, Australia

© University of the Sunshine Coast, QUEENSLAND, AUSTRALIA | CRICOS Provider Number: 01595D

usc.edu.au

- 1. Background Measurement of wood
- 2. Volumetric measurements of truckloads
- 3. Results from research trials AFORA/Forico multi-view photogrammetry and 3D image reconstruction software
- 4. Future research
- 5. Summary

Why measurement of wood is important?

- Wood is an important cost component of the supply chain costs:
 - >50% of delivered cost
 - Millions of dollars per year

University of the Sunshine Coast

- Approximate breakdown of the major costs:
 - 1/3 cost = wood
 - 1/3 cost = harvest
 - 1/3 cost = transport

Measurement methods

Solid volume

Frame volume

Green tonnes

The unit of measurement

"The unit of quantity must be objective, reproducible, easily and cost-effectively determined, and fair to both the buyer and seller"

- 1. Objective: No or minimum human intervention
- 2. Reproducible: Quantity does not vary each time a load is measured
- 3. Easily and cost-effectively determined: Measurements are quick, automatic, and involve low operational and sampling costs
- 4. Fair: Does not create perverse incentives

Why volumetric measurements?

The measure is related to the VALUE of the product traded

Dry wood

External Characteristics

VALUE

Water

NO VALUE

The goal is to measure only the value

Frame volume measurements

- Or gross between
- Solid-to-frame volume ratio depends on product type, arrangements of logs, length and diameter distribution, taper, knots, crook and sweep
- Better than weight and can be used to estimate solid volume (factors, regression models), but


Volumetric measurements of truckloads

voiume,	includes air spaces
logs	

usc.edu.au © University of the Sunshine Coast, QUEENSLAND, AUSTRALIA | CRICOS Provider Number: 01595D

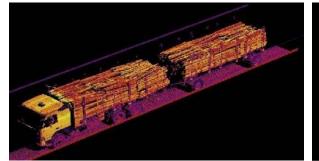
Solid volume measurements

- Solid volume is related to fibre quantity
- Solid volume captures value
- Solid volume is fair, no perverse incentives
- Solid volume is reproducible
- Solid remains unchanged along the supply chain

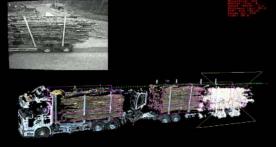
Volumetric measurements of truckloads

Solid volume measurements

Laser scanning


Stereoscopic cameras

Laser scanning



Source: Woodtech

Source: Saab/Microtec

Source: Mabema

© University of the Sunshine Coast, QUEENSLAND, AUSTRALIA | CRICOS Provider Number: 01595D

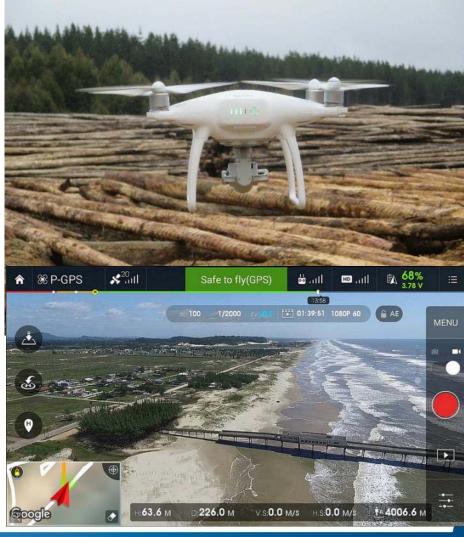
Multi-view 3D reconstruction of truckloads – AFORA / Forico trial

Objectives

- Test multi-view photogrammetry and commercial 3D reconstruction software as an innovative and alternative method for automated volumetric measurement of truckloads
- 2. Determine frame and solid volume using this approach / technology
- 3. Determine accuracy of the approach in comparison to other measurement systems
- 4. Propose guidelines for the implementation of the technology in real operating conditions

Multi-view 3D reconstruction of truckloads – Steps

- 1. Fly drone around 10 trucks (E. nitens, semitrailers)
- 2. Measuring each truckload for solid volume
- 3. Processing images of each truckload (35-50 photos) with 3D reconstruction software (Agisoft)
- 4. Generating a 3D truckload
- 5. Calculate frame volume (Autodesk Remake)
- 6. Calculate frame-to-solid vol. ratio, and predict solid vol. from frame volume vol. with regression model
- Develop an algorithm to estimate solid volume from the 3D model developed from the images

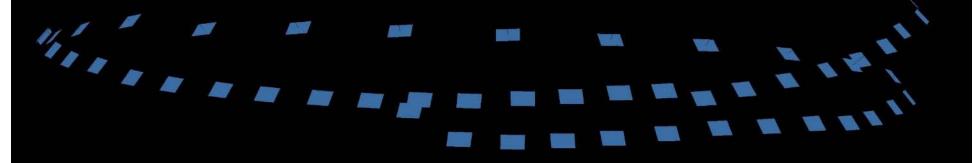

Data collection with drone L University of the Sunshine Coast

Phantom 4 Intelligent fly mode: POI

usc.edu.au

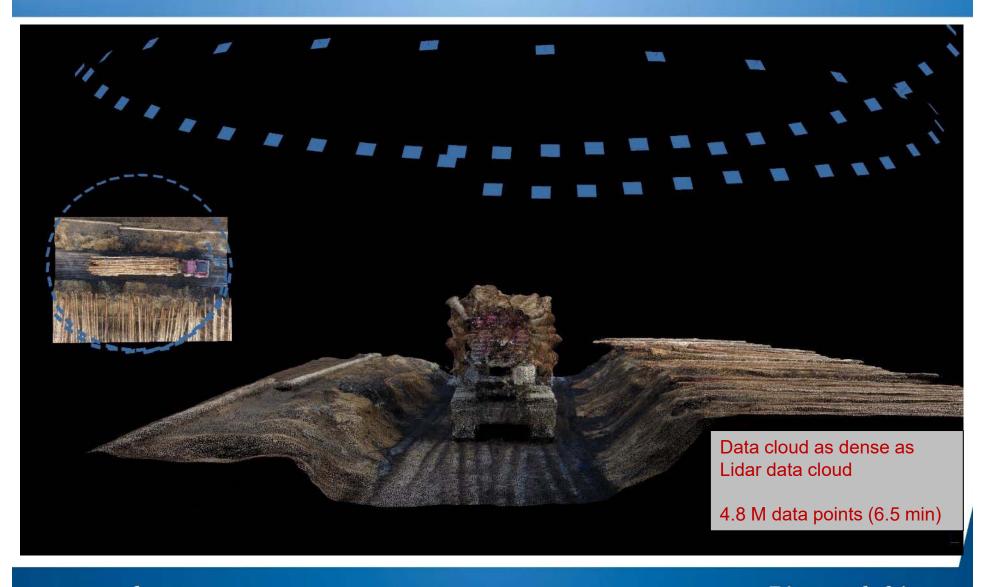
10 truckloads

1,230 logs measured for solid volume using Huber


Data collection with drone L University of the Sunshine Coast

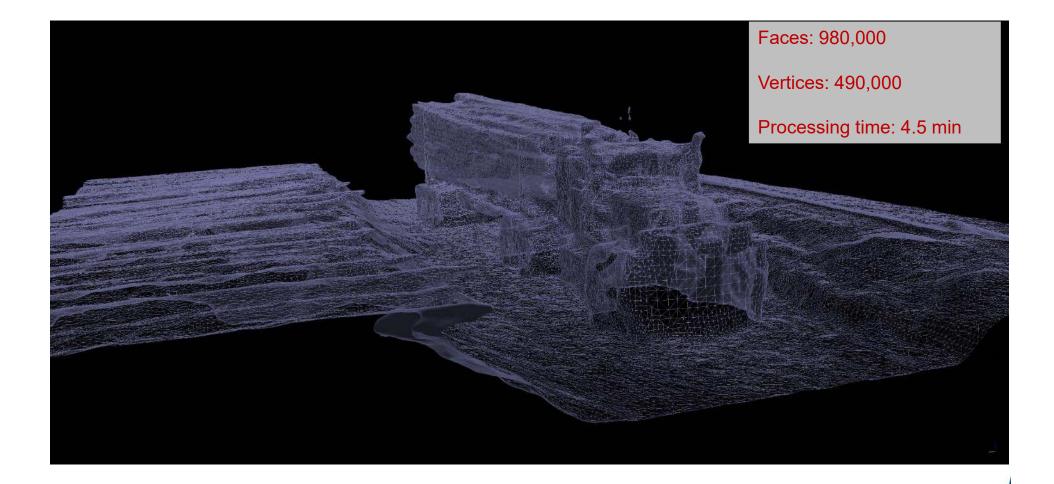
Workflow – 1. Data cloud

Features points detection and matching procedures



usc.edu.au © University of the Sunshine Coast, QUEENSLAND, AUSTRALIA | CRICOS Provider Number: 01595D Rise, and shine.

Workflow – 2. Dense cloud




usc.edu.au Rise, and shine. © University of the Sunshine Coast, QUEENSLAND, AUSTRALIA | CRICOS Provider Number: 01595D

Workflow – 3. Mesh

Workflow – 4. 3D tiled model L University of the Sunshine Coast

3D Truckload on Sketchfab

https://sketchfab.com/macuna

SAVE VIEW

Log measurements

		SED (mm)	LED (mm)	Log length (m)
Short logs (N = 1,943)	Min.	40.0	65.0	2.65
	Max.	335.0	392.0	6.05
	Mean	108.8	160.9	5.39
	Median	100.0	155.0	5.43
	Std. Dev.	37.3	43.2	0.19
Long logs (N = 4,837)	Min.	35.0	85.0	6.10
	Max.	353.5	575.0	12.98
	Mean	134.3	244.1	10.91
	Median	130.0	236.0	10.85
	Std. Dev.	49.2	64.9	0.87

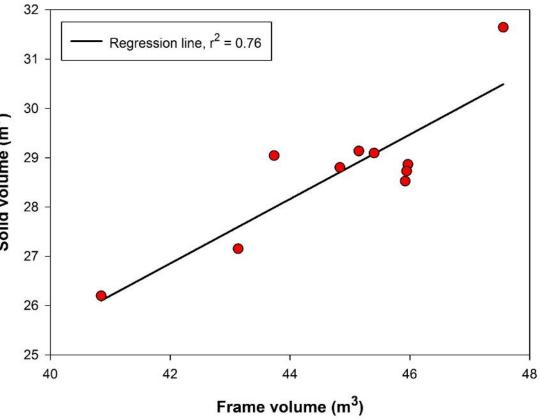
usc.edu.au

© University of the Sunshine Coast, QUEENSLAND, AUSTRALIA | CRICOS Provider Number: 01595D

Rise, and shine.

Results from 10 truckloads L Sunshine Coast

Truck #	GVM (tonnes)	Tare (tonnes)	Net payload (tonnes)	Net volume (m³s)	Frame volume (3D reconst.) (m ³)	Net-to- Frame volume ratio
1	45.90	14.95	30.95	29.04	43.73	0.66
2	45.55	15.35	30.20	28.52	45.92	0.62
3	50.35	16.10	34.25	31.64	47.56	0.67
4	41.55	14.75	26.80	26.20	40.85	0.64
5	46.00	15.65	30.35	29.09	45.40	0.64
6	46.00	15.70	30.30	29.13	45.15	0.65
7	45.35	14.95	30.40	28.86	45.97	0.63
8	46.10	15.15	30.95	28.73	45.95	0.63
9	46.50	17.85	28.60	27.15	43.13	0.63
10	45.35	15.50	29.85	28.80	44.83	0.64
Min	41.55	14.75	26.80	26.20	40.85	0.62
Max	50.35	17.85	34.25	31.64	47.56	0.67
Average	45.88	15.78	30.09	28.54	44.85	0.64
Std. dev.	2.00	1.05	1.87	1.46	1.87	0.02


usc.edu.au

© University of the Sunshine Coast, QUEENSLAND, AUSTRALIA | CRICOS Provider Number: 01595D

Estimating solid volume from frame volume

Statistics Frame Frame volume 1 volume 2 Min 40.85 37.81 Solid volume (m³) 47.98 Max 47.56 Mean 44.90 44.85 1.87 2.90 Std. dev.

Frame volume 1: multi-view photogrammetry and 3D reconstruction Frame volume 2: side photos of truckloads

University of the Sunshine Coast

Future research

- Compare photogrammetry, stereoscopy and laser scanning systems for automated volumetric measurements of truckloads
- 2. Develop a computer vision algorithm to reconstruct the logs located in the periphery of the truckload (OpenGL, PCL)

Summary

- 1. Multi-view photogrammetry and commercial 3D image reconstruction software were tested as an innovative and alternative method for automated volumetric measurement of truckloads
- 2. Results indicate the potential use of this approach to calculate the frame volume of truckloads
- A high coefficient of determination (r² = 0.76) was obtained between frame volume calculated with Multiview photogrammetry and manual solid volume
- New algorithms will be developed for a direct calculation of solid volume from the data cloud collected with photos and laser sensors

Automated volumetric measurement of truck loads through multiview photogrammetry and 3D reconstruction software

> Mauricio Acuna AFORA, USC, Australia

© University of the Sunshine Coast, QUEENSLAND, AUSTRALIA | CRICOS Provider Number: 01595D

usc.edu.au