

Cable logging operation supported with sensor fusion

Marek Pierzchała¹ Knut Kvaal² Bruce Talbot ¹

¹Norwegian Institute for Bioeconomy Research Aas, Norway

²Faculty of mathematics and technology Norwegian University of Life Sciences, Aas, Norway

Precision Forestry Symposium, Stellenbosch, 2017

Aims Introduction Methods Results Co	onclusions
00 00	
00 00	
00 00	
00	

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 2/19

Aims
Introduction
Methods System setup Data preparation Multivariate data analysis
Results Video Transfer rates PCA Biplot PLS results

Conclusions

S NIBIO

Aims	Introduction	Methods 00 00 00	Results 00 00 00 00 00	Conclusions
		Δ		

Aims

Development and test a standalone communicaton platform for capturing and processing cable-yarding operations data

- 1. Integration of IMU, GPS and camera data to support automatic work phase recognition.
- 2. Quantification of the phase prediction success of the method.

Aims	Introduction	Methods	Results	Conclusions
		00 00 00	00 00 00	
			00	

Introduction

Finite state machine can be depicted as a graph, whose nodes represent possible system states, and whose arrows represent possible transitions from state to state.

Aims	Introduction	Methods	Results	Conclusions
		•0	00	
		00	00	
		00	00	
			00	

Aims

Introduction

Methods System setup Data preparation Multivariate data analysis

Results

Video Transfer rate PCA Biplot PLS results

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		00	00	

System setup

This setup was tested on self propelled Woodliner with Konrad KMS tower yarder. Whole tree harvesting was used with downhill extraction in a 160m long corridor.

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		•0	00	
		00	00	
			00	

Ai	ims	
Int	troduction	
M	lethods System setup Data preparation Multivariate data analysis	
Re	esults Video Transfer rates PCA Biplot PLS results	

Conclusions

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		0.	00	
		00	00	
			00	

Data preparation

- 1. IMU (orientation, angular velocity, linear acceleration)
- 2. GPS (elevation, velocity)
- 3. Camera (optical flow motion vectors)

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		00	00	
		•0	00	
			00	

Aims

Introduction

Methods

System setup Data preparation Multivariate data analysis

Results Video

I ranster rates

- PCA Biplot
- PLS results

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		00	00	
		0.	00	
			00	

Multivariate data analysis

- 1. Variables recorded from different sensors were collected as rows in Matrix ${\sf X}$
- 2. 6 phases were manually classified were collected in corresponding matrix Y
- 3. Responses in Y consisted of 6 categorical binary dummy variables

Table: Test verification responses (TP, FP, FN, TN) for PLS model classification of work phases where A is the true phase.

	Condition	
	A	Not A
Test says "A"	True positive(TP)	False positive (FP)
Test says "Not A"	False negative (FN)	True negative (TN)

Aims	Introduction	Methods	Results	Conclusions
		00	•0	
		00	00	
		00	00	
			00	

Aims

Introduction

Methods

System setup Data preparation Multivariate data analysis

Results

Video

Conclusions

Transfer rates PCA Biplot PLS results

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		00	00	

Video

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		00	•0	
		00	00	
			00	

Aims

Introduction

Methods

System setup Data preparation Multivariate data analysis

Results

Video

Conclusions

Transfer rates

PCA Biplot PLS results

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		00	00	
			00	

Transfer rates

Table: Data packets size (kilobytes) and data transfer rates (kilobytes/s) test results for the different sensor devices used on the communication platform.

Data source	size min	size max	frequency	rate min	rate max
	(KB)	(KB)	min (Hz)	(KB/s)	(KB/s)
GPS	0.12	0.12	0.96	0.12	0.12
IMU	0.32	0.32	0.01	32	32
Camera 2 (RaspiCam) com-	57	112	0.04	1425	2800
pressed image	50	70	0.005	604.11	050.00
pressed image	59	/3	0.085	694.11	858.82
Total (including compressed im-	116.44	185.44		2151.23	3690.94
ages only)					
Camera 1 (USB cam) raw image	942.08	942.08	0.1	9 420.8	9 420.8
Total (all data)	1 058.52	1 127.52		11 572.03	13 111.74

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		00	00	
		00	00	

Aims

Introduction

Methods

System setup Data preparation Multivariate data analysis

Results

Video Transfer rates PCA Biplot PLS results

onclusions

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		00	00	
		00	00	
			00	

PCA Biplot

Biplot of validation data

S NIBIO

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ① ○ ○ 16/19

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		00	00	
		00	00	
			•0	

Aims

Introduction

Methods

System setup Data preparation Multivariate data analysis

Results

Video Transfer rates PCA Biplot PLS results

onclusions

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		00	00	

PLS results

Table: Prediction results for classification success per work phase.

[Confusion Matrix showing test verification responses, number of observations (N) and the precision of classification (P).]

Class: TP EP TN	FN	Ν	D
			•
outhaul 0.767 0.018 0.981	0.232	56	0.843
choking 0.947 0.076 0.923	0.052	133	0.818
lateral in 0.795 0.041 0.958	0.204	88	0.804
inhaul 0.738 0.038 0.961	0.261	111	0.845
unhook 0.721 0.066 0.933	0.278	61	0.602
stop 0.450 0.033 0.966	0.549	51	0.605

[Confusion Table showing the distribution of predicted classifications (rows) per actual work phase (columns).]

Predicted	outhaul	choking	lateral in	inhaul	unhook	stop
outhaul	43	0	0	0	8	0
choking	12	126	15	1	0	0
lateral in	0	6	70	11	0	0
inhaul	0	1	3	82	2	9
unhook	1	0	0	9	44	19
stop	0	0	0	8	7	23

Aims	Introduction	Methods	Results	Conclusions
		00	00	
		00	00	
		00	00	
			00	

Conclusions

- 1. Study showed promising method for enabling machine communication with max latency of 0.16s.
- 2. WLAN has a potential for cable yarding with defined spatial range
- 3. Data fusion from different sensors resulted in 78 % of correct classification.
- 4. Further implementation of this concept is considered a starting point for further development of autonomous routines in cable yarding.

