

NATURAL RESOURCES CANADA - INVENTIVE BY NATURE

# Sawing optimization based on X-ray computed tomography images of internal log attributes

### Isabelle Duchesne<sup>1</sup>, Denis Belley<sup>2</sup>, Steve Vallerand<sup>2</sup>, Julie Barrette<sup>1</sup>, and Michel Beaudoin<sup>2</sup>

<sup>1</sup>Natural Resources Canada, Canadian Wood Fibre Centre, Québec, Canada <sup>2</sup>Département des sciences du bois et de la forêt, Université Laval, Québec, Canada

> Precision Forestry Symposium 2017 Stellenbosch, South Africa

> > Feb. 28, 2017



Canadian Wood Fibre Centre ( Working together to optimize wood fibre value – creating forest sector solutions with FPInnovations





Natural Resources Ressources naturelles Canada Canada

### Acknowledgements to ForValueNet – The NSERC strategic network on forest management for value-added products



RSNG

ForêtValeur



## Outline

- 1. Introduction and Objectives
- 2. Approach
- Knot detection tool for CT images of logs CT2Opti 3.
- **Results Sawing simulations results in Optitek** 4.
- 5. Conclusions and Next steps





## Introduction

 Current sawing optimization strategies in softwood sawmills are mainly based on external log characteristics. Yet, knots are one of the major defects affecting stem quality and lumber structural performance (e.g. Oyen *et al.* 1999; Longuetaud *et al.* 2012).

 Knowledge of internal log attributes is important to adapt sawing patterns to the characteristics of fibre supply and extract more value.





## **Objectives**

Evaluate whether knowledge of internal knottiness combined with optimized log rotation could increase lumber value yields for white spruce (*Picea glauca* (Moench)) and jack pine (*Pinus banksiana* Lamb.) stems.





### **Material: 32-year old Nelder type plantation** established by the New Brunswick Department of **Natural Resources in 1977**



#### **Canadian Wood Fibre Centre** Working together to optimize wood fibre value - creating forest sector solutions with FPInnovations







# Material: 32-year old plantation grown in New Brunswick, Canada



Type la Nelder spacing design

### **Spacing/density range:**

- 0.87 ×0.91 m ~ 3.50×3.66 m
- 12,000 ~ 600 stems per hectare

### 53 trees harvested:

- 31 white spruce (Picea glauca)
- 22 jack pine (Pinus banksiana)



### White spruce



#### Canadian Wood Fibre Centre Working together to optimize wood fibre value – creating forest sector solutions with FPInnovations

















# External stem shape assessment using FPInnovations portable laser scanner



#### Canadian Wood Fibre Centre







### Average stem characteristics measured from FPInnovations portable laser scanner and Optitek

| Species      |          | Scanned<br>Length | DBH  | Taper  | Sweep  | Merchantable<br>volume |
|--------------|----------|-------------------|------|--------|--------|------------------------|
|              |          | (m)               | (cm) | (cm/m) | (cm/m) | (dm³)                  |
| White spruce | avg.     | 6.9               | 16.2 | 1.2    | 0.5    | 99.4                   |
|              | st. dev. | 2.1               | 3.9  | 0.3    | 0.2    | 59.9                   |
|              | max.     | 10.5              | 25.3 | 2.0    | 1.4    | 270.7                  |
|              | min.     | 2.5               | 9.6  | 0.6    | 0.2    | 11.3                   |
| Jack pine    | avg.     | 10.3              | 18.1 | 0.6    | 1.0    | 174.5                  |
|              | st. dev. | 1.6               | 4.2  | 0.2    | 0.3    | 85.3                   |
|              | max.     | 13.0              | 27.7 | 1.6    | 2.0    | 357.2                  |
|              | min.     | 5.3               | 10.8 | 0.3    | 0.5    | 27.2                   |

#### **Canadian Wood Fibre Centre**





### **CT scanning of 173 logs**



Institut National de la Recherche Scientifique (INRS), Québec (Canada)

#### Canadian Wood Fibre Centre

Working together to optimize wood fibre value – creating forest sector solutions with FPInnovations

## Siemens Somatom Sensation 64 medical scanner

### **CT-scanner parameters:**

a slice every mm a thickness of 2 mm (creating a superposition of 1 mm) 140 kV B80s Kernel 150 mA Pitch of 1.5

Log length: 2.5 m





Natural Resources Ressources naturelles Canada Canada

### **CT** images – Jack pine





#### **Canadian Wood Fibre Centre**







# Development of a knot recognition tool based on CT images: CT2Opti







## CT2Opti

- **Extracts log shape, pith point and knots** from a set of CT images
- Merges the data into an Optitek formatted log



ForêtValeur

### CT2Opti software

### More than 50 image processing functions

- Morphological operations (erosion, dilatation, opening, closing, ...)
- Edge detector (Sobel, Canny, Laplacian, ...)
- Threshold (basic, simple image statistics, step threshold, ...)
- Filter (Gaussian, custom, ...)
- Multiframe (substraction, binary operators, ...)
- Complex processes (table, shape, pith and knot extractions, ...)

### Features

- Quick reload using historic files
- Batch process
- Inverse log (small or big end first)
- Generate Optitek log



















## Pith point









## **Knot detection**













### **Optitek log model with internal knots**

Vallerand et al. Utilisation d'images CT pour la modélisation 3D de billes réelles avec caractéristiques internes. Note de recherche No. 2, Décembre 2011.





## Approach

- Three different sawing optimization strategies were used to compare **lumber value yields** in spruce and pine stems.
  - 1. Sweep up
  - 2. Shape optimized
  - 3. Knot optimized



#### **Canadian Wood Fibre Centre**



## **Optitek curve sawing simulations in** lumber value

- **Sweep up** (base case scenario): logs are positioned with the 1. maximum deflection in the vertical axis
- 2. Shape optimized: logs are rotated every 12 degrees (30 positions) to find the rotation where lumber value recovery is maximized (i.e. where wane is minimal)
- Knot optimized: logs are rotated every 12 degrees and sawn in 3. the position minimizing lumber downgrades due to knots.

Ressources naturelles

Canada

latural Resources

Canada





# Lumber value increased with optimized log rotation and when considering internal knots







### Sawing simulations in lumber value

## Table 2b: Protected LSD multiple comparisons of lumber value (\$) among thethree levels of sawing optimization strategies for each species.

LS-means with the same letter are not significantly different.

| Slice        | Sawing optimization | LS-means | Std Error | Grouping |
|--------------|---------------------|----------|-----------|----------|
|              | strategies          |          |           |          |
| Species (WS) | Knot optimized      | 2.1335   | 0.1482    | Α        |
|              | Shape optimized     | 2.1116   | 0.1482    | Α        |
|              | Sweep up            | 2.0473   | 0.1481    | В        |
| Species (JP) | Knot optimized      | 2.5377   | 0.1694    | Α        |
|              | Shape optimized     | 2.4202   | 0.1694    | В        |
|              | Sweep up            | 2.3125   | 0.1694    | С        |

Each sawing optimization strategy was significantly different from one another in jack pine and both *knot optimized* and *shape optimized* were significantly different from the *sweep up* position in spruce (Table 2b). **However, no significant difference arose between the** *knot optimized* and *shape optimized* strategies in white spruce.





### Lumber value recovery in relation to sawing optimization level

White spruce :

Sweep up < Shape optimized = Knot optimized

**Jack pine :** 

Sweep up < Shape optimized < Knot optimized

**Canadian Wood Fibre Centre** Working together to optimize wood fibre value – creating forest sector solutions with FPInnovation







## Conclusions

- By considering internal knots before log sawing, 23% more lumber value was generated for jack pine and 15% for white spruce compared with the *sweep up* sawing strategy.
- There is a good potential to increase mill profitability by implementation of the CT-scan technology.
- However, robust algorithms are needed for industrial applications.



## Next steps

- Link terrestrial LiDAR information on branchiness with CT images of internal knottiness (and products)
- Collaboration with **Prof. Richard Fournier** U. de Sherbrooke

### LiDAR (tree shape) + CT Scan (knots)



#### **Canadian Wood Fibre Centre**



