#### PREDICTION MODEL FOR VARIATIONS IN HARVESTER PRODUCTION

Victor Asmoarp, Aron Davidsson and Petrus Jönsson The Forestry Research Institute of Sweden



#### Wood demand





Wood demand per month during one year in a wood supply area

# **Rolling plan**



|        | SP    | FW   | ST    | HP    | Р | РТ    | Total |
|--------|-------|------|-------|-------|---|-------|-------|
| Mars   | 7100  | 1500 | 8100  | 3800  | 0 | 4500  | 25000 |
| April  | 6900  | 1300 | 7400  | 3400  | 0 | 4500  | 23500 |
| May    | 6400  | 1200 | 7100  | 3700  | 0 | 4600  | 23000 |
| Totalt | 20400 | 4000 | 22600 | 10900 | 0 | 13600 | 71500 |

- Wood manager productions plan to meet demand
- Three-month rolling production plan every month
- First month is sharp

## **Historical production**





Total harvest production per month in three years in a wood supply area.

## **Historical production**





Total harvest production per month in three years in a wood supply area.

### **Purpose and aim**



- The purpose of this study was to build models that support Norra wood supply managers in their work with the three-month rolling production plan.
- The aim was to validate the model on a small area during a limited time period.



## Data and study area



- Wood supply area Södra Ångermanland
- Historical harvester data from
  - 2013-2015
  - 27 harvester in three sizes small, medium and large
  - 734 000 m<sup>3</sup> produced volume
- Working days per month
- Wheather data
- Information about harvested objects



## Approach



- Build a regression-model on historical data
- Test how different parameters affecting the respondents, outcome of volume and assortments.
- The prediction model was split in two parts
  - the first estimate produced volume per machine and month
  - the second estimate the percentage of an assortment in a specific month for a specific machine.
- This two models combined together will estimate the volume per machine, assortment and month.

## **Model for production**



$$V_{mt} = \beta_0 + \beta_1 * A + \beta_t * N + \beta_m * M_t$$
 R<sup>2</sup> of 77 %

Variables:

- (A) Percentage final fellings of total harvesting objects
- (N) Norm production (m<sup>3</sup>/month), contracted volume per year divided with the number of productive month
- (M) Average stem (m<sup>3</sup>/stem), calculated as an average over planed harvesting objects a specific month.

Index:

- (m) Machine-class (Small, Medium, Large)
- (t) Time period (Jan, ..., Dec)

Parameters:

| $(eta_0)$<br>$(eta_1)$                                      | 5.4<br>728.2 |                 |              |                |                |               |               |              |              |              |              |              |
|-------------------------------------------------------------|--------------|-----------------|--------------|----------------|----------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|
| Machine-cl<br>(βm)                                          | lass (m)     | Small<br>3247.3 | Med<br>1872  | ium I<br>2.6 3 | Large<br>755.9 |               |               |              |              |              |              |              |
| $\begin{array}{l} \text{Month}(t) \\ (\beta t) \end{array}$ | Jan<br>0.834 | Feb<br>0.890    | Mar<br>0.954 | April<br>0.782 | Maj<br>0.535   | June<br>0.305 | July<br>0.159 | Aug<br>1.022 | Sep<br>0.835 | Oct<br>0.735 | Nov<br>0.615 | Dec<br>0.502 |

### Model for assortment



 $\overline{P}_{amt}$  Percantage of assortment a for machine-class m in time period t

#### The combined prediction model

 $(V_{amt})$  per assortment (a), machine-class (m) and month (t) can then be formulated as:

$$V_{amt} = \overline{P}_{amt} * V_{_{mt}}$$

## Validation



- The models were validated with data from
  - Wood supply are Södra Ångermanland
  - Period of January to April 2016
  - 12 harvesters operating.
- Estimated a total volume ~118 000 m<sup>3</sup>
- Actual produced volume ~100 000 m<sup>3</sup>

### **Production model**





## **Assortment model**



|           | Assortments   |           |               |               |       |             |  |  |  |
|-----------|---------------|-----------|---------------|---------------|-------|-------------|--|--|--|
|           | Softwood pulp | Fire wood | Spruce timber | Hardwood pulp | Poles | Pine timber |  |  |  |
| Predicted | 31%           | 5%        | 31%           | 19%           | 2%    | 12%         |  |  |  |
| Produced  | 36%           | 7%        | 27%           | 19%           | 0%    | 11%         |  |  |  |

- The model for proportion of assortment per machine and month estimated the assortments fairly good.
- The model
  - underestimated softwood pulp and fire wood
  - overestimated spruce timber, pine timber and poles.

## Conclusion



- It's possible to use historical harvester data to predict the produced volume per assortment and month for a wood supply area.
- The small overestimation is most probably due to bad input data about mean steam volume from field inventory.
- With bigger data set to calibrate this model with there will probably be better predictions.

## **Further work**



- Increase the accuracy of models
  - Remove temporal producing machines
- Develop models for the 7 other wood supply areas

#### Thanks for listening

aron.davidsson@skogforsk.se The Forestry Research Institute of Sweden

