Direct dipolar interaction

Usually the dominating interaction in solids (for spin-1/2 nuclei)

→ usually main reason for linebroadening

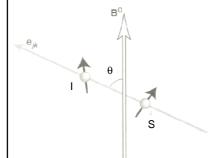
- → Each nuclear spin is magnetic
- → generates a magnetic field, looping around in the surrounding space
- → a 2nd spin interact with this magnetic field
- → mutual interaction

Homonuclear:

→ Same isotopic species

Heteronuclear:

→ Different isotopic species



M. Levitt, spin dynamics, 2nd edition, Wiley & sons,(2008)

Solid State NMR workshop 2011

Direct dipolar interaction

Heteronuclear and homonuclear coupling

Dipolar, secular Hamiltonians in the rotating frame:

$$\hat{H}_{D}^{\text{hetero}} = -d\frac{1}{2}(3\cos^2\theta - 1)\hat{I}_z\hat{S}_z$$

$$\begin{split} & \text{homonuclear:} \\ & \hat{H}_{\scriptscriptstyle D}^{\scriptscriptstyle \, \text{homo}} = - d\,\frac{1}{2} \Big(3\cos^2\theta - 1 \Big) \! \Big[3\hat{I}_z \hat{S}_z - \hat{\mathbf{I}} \cdot \hat{\mathbf{S}} \Big] \end{split}$$

with:
$$d = -\frac{\mu_0 \gamma_I \gamma_S \hbar}{4\pi r_{IS}^3}$$

d: dipolar coupling constant, measure for the strength

M. Levitt, spin dynamics, 2nd edition, Wiley & sons,(2008)

Direct dipolar interaction

Heteronuclear and homonuclear coupling

What information can we extract from these equations?

$$\hat{H}_D^{\text{hetero}} = -d\frac{1}{2} \left(3\cos^2 \theta - 1 \right) \hat{I}_z \hat{S}_z$$

$$\hat{H}_{D}^{\text{hetero}} = -d \frac{1}{2} \left(3\cos^{2} \theta - 1 \right) \hat{I}_{z} \hat{S}_{z} \qquad \hat{H}_{D}^{\text{homo}} = -d \frac{1}{2} \left(3\cos^{2} \theta - 1 \right) \left[3\hat{I}_{z} \hat{S}_{z} - \hat{\mathbf{I}} \cdot \hat{\mathbf{S}} \right]$$

with:
$$d = -\frac{\mu_0 \gamma_I \gamma_S \hbar}{4 \pi r_0^3}$$

dependence of

- γ : The higher γ (larmor frequency), the stronger the dipolar coupling

Strong impact! The smaller the distance between the spins I and S the stronger the dipolar coupling!

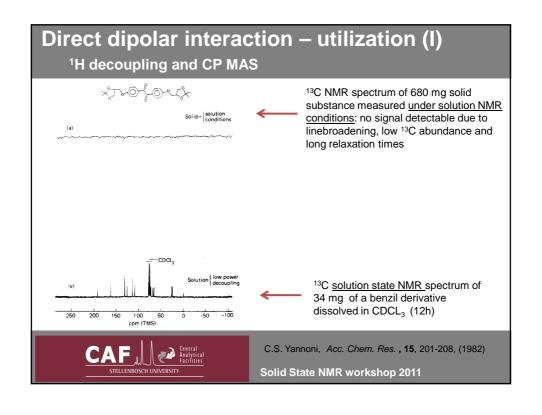
only $(3\cos^2\theta - 1)$ -term! Dipolar coupling can be (theoretically) averaged out by MAS

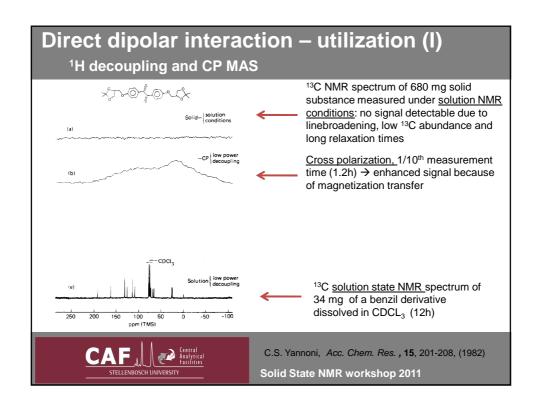
Spin term: Differences between hetero- and homonuclear coupling! Origin for different response to pulse sequences and lineshapes.

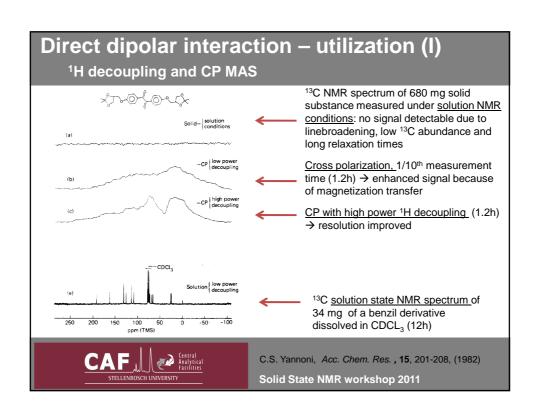
Solid State NMR workshop 2011

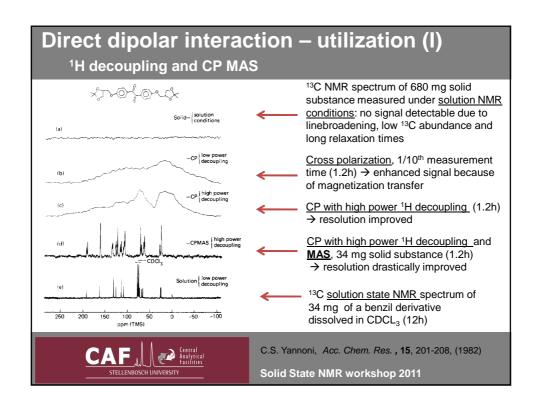
Direct dipolar interaction

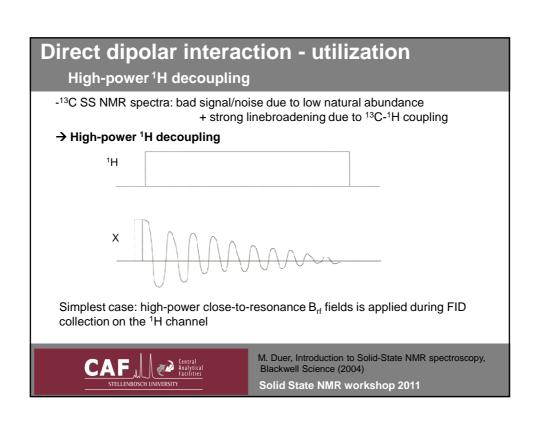
What are strong dipolar nuclei?


nucleus	Frequency/MHz @11.7T	Nat. abundance	Dipolar coupling	Why?
¹ H	500	99.99%	strong!!!!	$\text{big }\gamma\text{, small }r$
² H	77	0.02%	weak	small γ , big r
¹³ C	126	1.10%	weak	big r
¹⁹ F	470	100%	strong!!!!	big γ , small r
²⁹ Si	99	4.67%	weak	big r
³¹ P	202	100%	strong	small r


→ ¹H and ¹⁹F NMR spectra are dominated by homonuclear coupling


→ spectra of substances with ¹H (and ¹⁹F) are usually dominated by X-¹H coupling




Two main uses: | : magnetization transfer | | : probing internuclear distances | : probing internuclear distances | | :

Direct dipolar interaction - utilization

High-power ¹H decoupling

How does ¹H decoupling work?

effect of close-to-resonance irradiation:

¹H spins undergo repeated m=1/2 ↔m=-1/2 transitions (the higher the amplitude of the rf-irradiation the faster the transitions rate)

remember:
$$\hat{H}_{D}^{\text{hetero}} = -d\frac{1}{2}(3\cos\theta^2 - 1)\hat{I}_{z}\hat{S}_{z}$$

→ If m=1/2 ↔m=-1/2 transitions rate is fast enough, then $\left\langle m_{H}\right\rangle =0$ $\Rightarrow\left\langle \hat{H}_{D}^{\mathrm{hetero}}\right\rangle =0$

How strong must ¹H deoupling amplitude be?

Dipolar coupling constant of bonded ¹³C-¹H spin pair: 22kHz

→ Decoupling field: ideally 66kHz

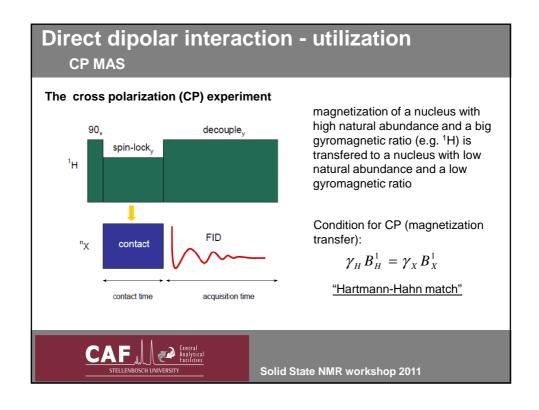
Solid State NMR workshop 2011

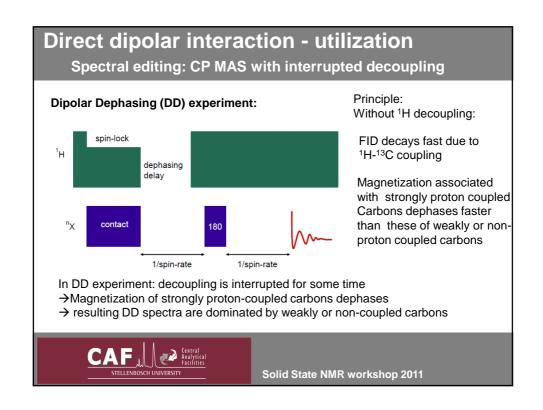
Direct dipolar interaction - utilization

High-power ¹H decoupling

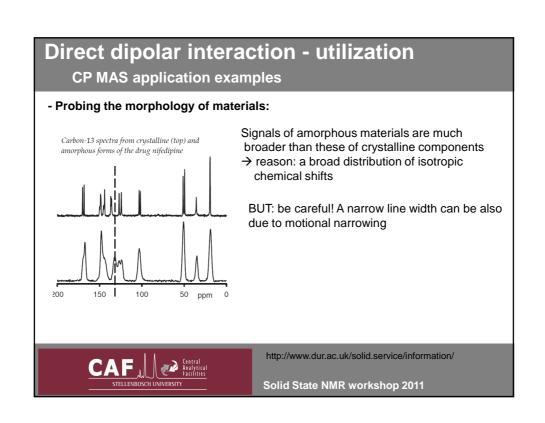
Important practical aspects:

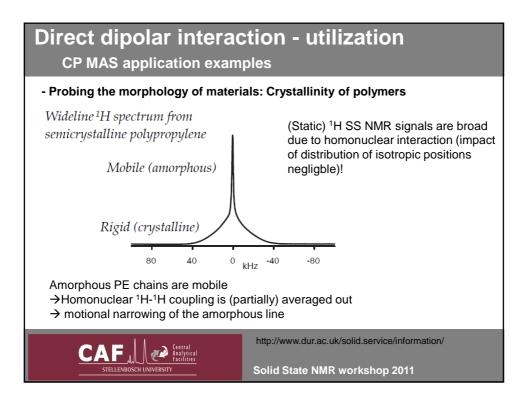
high-power irradiation for long times → potential risk to damage the probe!

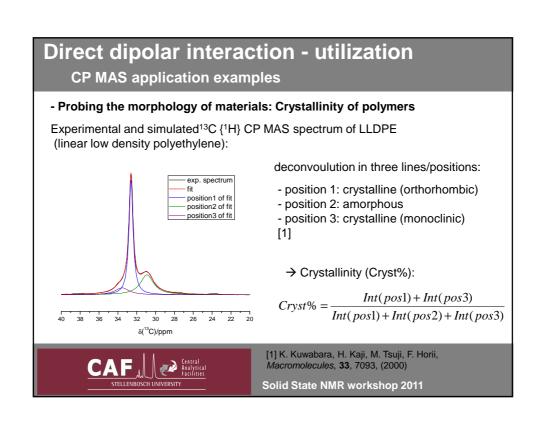

to avoid damages:

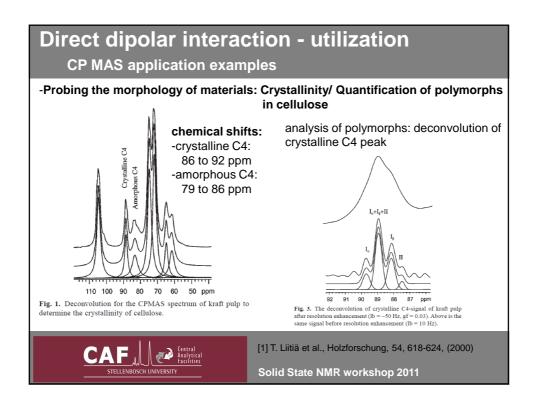

- → probe must be well tuned
- →Choose acquisition time, which is sufficient to measure the FID, but not much longer

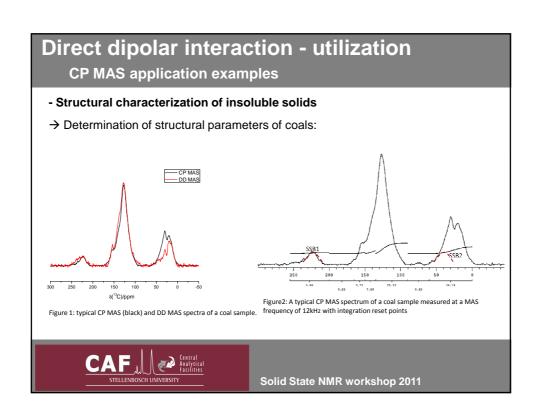
→If FID shows large random spikes:

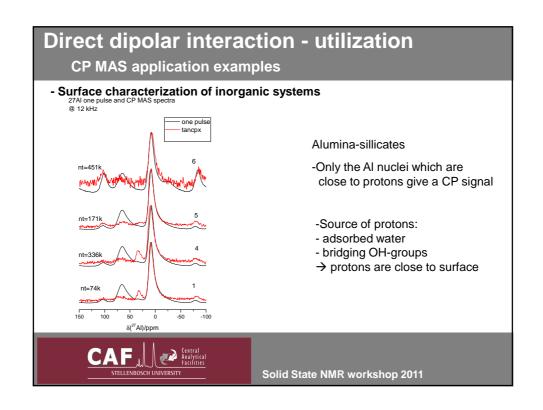

→ arcing! : check tuning reduce 1H decoupling power








Direct dipolar interaction - utilization CP MAS application examples -Identification of solid forms by comparing its spectrum with that from a characterized sample The high-frequency region of this ¹¹C spectrum can be rationalised in terms of a mixture of two components (60% A. 40% B determined from the spectrum) Component A Component A Component B http://www.dur.ac.uk/solid.service/information/ Solid State NMR workshop 2011



Direct dipolar interaction - utilization **CP MAS application examples** - Structural characterization of insoluble solids → Determination of structural parameters of coals: Fraction Aromatics Corrected Fraction Aromatics (excl CO) Fraction Aliphatics Fraction Aliphatic C's bonded to Oxygen Fraction CO Fraction Phenolics Fraction Alkylated Aromatics Fraction Non-Protonated C's in aromatic region Fraction Protonated C's in aromatic region Fraction Bridgehead C's Fraction Non-Protonated C's+Methyl groups in Aliphatic region Aliphatic CH+CH2 Mole fraction of Aromatic Bridgehead C's Average # of Aromatic C's per cluster #Clusters/100 Carbons #of attachments per cluster Solid State NMR workshop 2011

Direct dipolar interaction - utilization

advantages and disadvantages of CP MAS

Advantages

- + recycle delay $\propto T_1(^1H)$ (not $\propto T_1(X)$ and $T_1(^1H) << T_1(X)$
- + signal enhancement (potentially $\gamma_{\text{H}}\!/\;\gamma_{\text{X}}\!)$
- + fewer problems with background signals
- + potentially selective
- + can probe relationship between nulcei

Disadvantages

- Not quantitative
- potentially selective

