Chirascan: Fluorescence Scanning as a Function of Temperature.

The data below was collected on Chirascan in April 2010 as part of a customer evaluation.

Temperature dependant fluorescence spectra

The same collection conditions (continous temperature-ramping, acquiring one spectra every 2^{0} C) was also used to collect the emission spectra shown below under the experimental conditions tabulated. (The Chirascan accessories: TF.3 fluorescence detector, and SEM.3 emission monochromator are required for this experiment.)

Samples	Apo-Transferrin
Solvent	Na Phosphate buffer
Concentration	0.1 mg/mL
Bandwidth	1 nm excitation, 8.5 nm emission
Cell Pathlength	10 mm
Wavelength range	300 - 400 nm
Excitation wavelength	280 nm
Step size	1 nm
Scan Time	2 minutes per spectrum
Temperature range	20 - 90°C
Ramp rate	1°C per minute
Smoothing	RAW data (no smoothing)

A shift in the spectral peak with increasing temperature is clearly apparent.

... as with the CD data, these data can also be viewed in terms of the temperature dependence at each emission wavelength, as shown below.

The emission spectra at 20^{0} C before, and after the experiment were also recorded (below)

