Critical Reading

"The test of literature is, I suppose, whether we ourselves live more intensely for the reading of it." Elizabeth Drew

Graeme van der Meer January 2008

EBM

Evidence-based medicine is the conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients.

Questions to be asked....

• What is the evidence?

- How reliable is the methodology? Bad methodology is rarely obvious from reading the paper or it would not have been published.
- How convincing is the result? P-values / Sample size
- Are there alternative explanations? Association and causation are not the same.
- Is there selective publication?
- Is there a conflict of interest?

Some Pitfalls

- The more data is pooled the less relevant it becomes to individual patients. Metanalysis has its limits.
- Medical journals cannot always prevent papers from being ghostwritten by pharmaceutical companies.
- Lack of evidence of efficacy is <u>not the same</u> as evidence of lack of efficacy.

Making decisions...

Is the evidence valid?
Is it important?
Is it applicable to the patient in front of me?

Levels of Evidence Oxford Centre for EBM (May 2001)

1a: SR with homogeneity of RCT's
1b: RCT with narrow confidence interval
1c: "All or none"

Levels of Evidence Oxford Centre for EBM (May 2001)

2a: SR with homogeneity of cohort studies
2b: Individual cohort study eg: low quality RCT
2c: Outcomes research

Levels of Evidence Oxford Centre for EBM (May 2001)

• 3a: SR of case control studies

- 3b: Individual case-control study
- 4: Case series

(and poor quality cohort and case-control studies)

• 5: Expert opinion without critical appraisal.

Grading of Recommendations (British)

Level A: Based on hierarchy I evidence. • Level B: Based on hierarchy II evidence or extrapolated from hierarchy I evidence. Level C: Based on hierarchy III evidence or extrapolated from hierarchy I or II evidence Level D: Directly based on hierarchy IV evidence or extrapolated from hierarchy I, II or III evidence

The US version...

A: Requires at least one RCT as part of the body of evidence.

B: Requires availability of well-conducted clinical studies but no RCTs in the body of evidence.

C: Requires evidence from expert committee reports or opinions and/ or clinical experience. Indicates absence of directly applicable studies of good quality.

Is it important?

Depends upon the significance of the event and the level of risk.

Eg: 50% increase in risk from 4 in 10 to 6 in 10 is important, while 1000% increase from 1 in 1000000 to 10 in 1000000 is not.

Is it relevant?

Can a study on obese children in the UK be extrapolated to marasmic children in Kenya?

Types of Trials – RCT's

- Gold standard, especially in placebo controlled DBRCT guise.
- Only 17% of RCT's in 2001 BMJ had placebos!
- Potential shortcomings:
 - Hawthorne Effect.
 - Failure to randomise.
 - Failure to analyse by intention to treat.
 - Ethics approval for "sham" surgeries?

Meta-analysis

- Combines trials.
- A large, well conducted trial is far more valuable than a meta-analysis.
- Fraught with pitfalls
 - Variances in individual study methodology
 - SELECTIVE PUBLICATION (A good meta-analysis should have <u>funnel plotting with cut and fill</u> to assess the completeness of publication.)

Longtitudinal / Cohort Trials

- Prospective or retrospective trials over a period of time.
- Sample size?
- Reliability of data extraction. (Eg: AIDS as a cause of death in SA)
- Lost to follow up?

Qualitative research

- No hard and fast outcomes (Eg: Pain on FNA)
- Important to validate qualitative tools.
 - Unvalidated work unlikely to appear in peerreviewed journals
 - Use of a previously validated scoring system is recommended.

Association and causation

- Is there evidence from true experiments in humans?
- Is the association strong?
- Is the association consistent from study to study?
- Is the temporal relationship appropriate?
- Is there a dose-response gradient?
- Does the association make epidemiological sense?
- Does the association make biological sense?
- Is the association specific?
- Is the association analogous to a previously proven causal association?

Further reading...

• Greenhalgh T, <u>How to read a paper series in</u> the BMJ.

 Basic & Clinical Biostatistics 2nd edition, Saunders and Trapp, LANGE Publishing.