Perioperative management in Diabetes Mellitus

Introduction

- Diabetics undergo surgery at higher rate than non-diabetics
- peri-operative morbidity and mortality are greater in diabetics
- Result partly from controllable factors such as regulation of perioperative bloodglucose concentration

therefor the most important aspect of disease considered in surgery and anaestesia is CONTROL OF THE DISEASE !

The metabolic challenge of surgery in diabetic patient

The immediate perioperative problems facing the diabetic patient are:

- surgical induction of the stress response with catabolic hormone secretion which is normally antagonised by insulin.
- interruption of food intake which may be prolonged → resulting catabolic response with ketoacidosis more severe in diabetics
- altered consciousness which masks the symptoms of hypoglycaemia and necessitates frequent blood glucose estimations

Aims of perioperative management :

- Avoid hypoglycaemia (irreversible cerebral damage)
- avoid excessive hyperglycemia→osmotic diuresis and severe dehydration
- avoid large swings in glucose; maintain bloodglucose in range of 6-10mmol/l
- 4. prevent ketoacidosis
- 5. avoid electrolyte disturbances eg hypokalaemia

Insulin...

therefor: perioperative insulin is needed for transport of glucose into cells and counter catabolic effects of increased stress hormones

Preoperative assessment

- Aimed at:
 - presence of complications
 - treatment regimes
 - evaluating blood glucose control

Preoperative assessment: Presence of complications

- Complete history and physical examinationFocus on :
 - Cardiovascular function: ?silent ischemia
 - Renal: ? proteinuria
 - Autonomic neuropathy: look for presense of orthostatic hypotension, resting tachycardia, loss of heart rate variability during respiration
 - Presence of infection

Preoperative assessment: Presence of complications

Side-room investigations:

- Urine dipstix: ?ketonuria,?proteinuria,?glucosuria,?infection
- Random blood glucose with fingerprick: good control? poor control?
- Special investigations:
 - CXR: infections? heartsize?
 - ECG: ?still miocardial infarction or ischemia
 - U+E: ?kidney function
 - ?HbA1c: >9% poor control ~ 3weeks
 - Ploodglucose: >11mmol/l poor control

Preoperative assessment: Treatment regimes

Sulphonylureas:

- Long-acting sulphonureas: Chlorpropamide has very prolonged duration of action(t¹/₂=35h)
- Can cause hypoglycaemia
- Stop 2-3days before surgery

Biguanides/metformin

- raise blood lactate levels
- can precipitate lactic acidosis
- stop 1week before Ø esp in patients with
- liver and kidney pathology (lactate degraded in liver and kidneys therefor longer halflife)
- acceptable to stop 1-2days before Ø in others

In both cases change to shortacting sulphonylureas eg.glibenclamide,glicazide

Preoperative assessment: Treatment regimes

Insulin:

intermediate and short acting insulins:

- can continue
- Iong-acting insulin:
 - stop days before if possible and substitute with intermediate of shorter acting insulin

Preoperative assessment: Control of bloodglucose

- urine testing: ?Ketones,
- random bloodglucose measurements: >11mmol/l is not under control
- HbA1c:±3weeks, >9% inadequate control

Perioperative management:

Pre operative Day of surgery Postoperative

Preoperative management:

- measure blood sugar preoperatively,4hly for IIDM& 6hly for NIDDM
- test urine for ketones
- place first in operating list: period of npo minimised
- avoid lactate containing fluids eg. Ringer's lactate

If Good control:

- replace metformin and chlorpramide with shorter acting agent
- terminate all agents 24hrs preop
- If poor control:
 - with ketonuria: delay none urgent surgery and control
 - without ketonuria: earlier hospitilisation, start sliding scale insulin regime
 - insulin must be administered Subcut every 6 hrs acc to sliding scale
 - the dose variation if the sliding scale will depend upon the severity of the diabetes

Preoperative management: Sliding Scale example

Bloodgl	ucose	(mmol/l)
8-10		

- 10-15
- 15-20
- >20
- If ketonuria additional
 5U

Day of Surgery:

management depends upon the magnitude of surgery including the estimated time to resumption if oral intake

 minor surgery: if pt can be expected to eat and drink within 4 hours of surgery
 major surgery: if Pt NPO > 4hrs

Day of surgery: Minor Ø:

- omit oral hypoglycaemic drug
 measure blood glucose
 - 1hrly pre-op
 - once during operation
 - post op 2hly until eating
 - then 8hrly

restart oral hypoglycemics (type2) / normal SC insulin regime (type1) with 1st meal

Day of surgery: Major Ø

- check blood glucose and K preop
- omit oral hypoglycaemics/normal SC insulin
- start iv infusion with glucose, insulin & K(GIK)
 - add 10-15units Actrapid plus 10mmol KCI
 - infusion of 500ml 10% dextrose
 - Infuse at 100ml/h
 - provides: insulin 2-3 u/h, glucose 10g/h & K+ 2mmol/h
- Measure bloodglucose 2hly
- if infusion not maintaining glucose within normal limits →increase rate

Post operative management:

NIDDM(Type2)&minor Ø

stop infusion and restart oral hypoglycemics when eating

IDDM &major Ø:

- check glucose 2-6hrly
- continue infusion sliding scale until oral diet reestablished
- when oral diet resumed give daily dosage of insulin as preoperative divided into tds
- adjust doses until levels stable
- once requirements stable restart normal regime

References:

- An Introduction to Anaestesiology 2nd edition, Andre coetzee & Wynand Vd Merwe
- Oxford Handbook of Anaestesia; Allman&Wilson
- Handbook of Anaestesia 4th edition;Aitkenhead,Rowbotham&Smith
- www.emedicine.com

Thank you!

