HEARING

Structure and Function

Rory Attwood MBChB,FRCS Division of Otorhinolaryngology Faculty of Health Sciences Tygerberg Campus, University of Stellenbosch

Function of auditory system

- Analyse
 - Discriminate -sounds - widely varying intensity widely varying frequencies any spatial direction

≻ complex varying patterns of pressure and frequency which differ at the two ears

Action of human ears is to interpret sound input by perceiving: intensity, frequency, timbre, localisation & masking of one sound by another.

Definitions (subjective correlations)

Pitch

- Intensity = Loudness
- Frequency =
- Timbre =
- Localisation =
- Masking =

Musical quality Spatial position One sound is selectively heard in preference to others

Measurement

 Sound intensity is normally measured in N/m² or Pascals

 The vast range of sound pressures perceived by humans is more conveniently described by a smaller range expressed in a logarithmic scale as *decibels* as a ratio of a reference intensity (2 x 10⁻⁵ N/m²)

Measurement

• Human range is:

0 db - 130 dB

"absolute" threshold

pain threshold

0 dB is a reference point for the "average"

Step sizes less than 1 dB are rarely detectable

Changes in intensity of equal numbers of dB correspond to approximately equal steps in loudness

0 dB is a reference point for the "average"

Step sizes less than 1 dB are rarely detectable

Changes in intensity of equal numbers of dB correspond to approximately equal steps in loudness

0 dB is a reference point for the "average"

Step sizes less than 1 dB are rarely detectable

Changes in intensity of equal numbers of dB correspond to approximately equal steps in loudness

Some levels

- From 1 m
- whisper
- conversation
- shout
- discomfort

- 30 dB
- 60 dB
- 90 db
- 120 dB

Definitions (subjective correlations)

Pitch

- Intensity = Loudness
- Frequency =
- Timbre =
- Localisation =
- Masking =

Musical quality Spatial position One sound is selectively heard in preference to others

Measurement

- Frequency is measured in Hz
- Frequency has the subjective correlate of pitch which is how the ear perceives changes in frequency
- However, complex sound has no clear specific pitch and the hearing apparatus has to sort the complex input and produce an intelligible interpretation

Measurement

Human ear can appreciate frequencies between 12Hz and 20 000Hz (some people have greater range) modern piano keyboard is 25Hz – 4000Hz
"Speech range" is 200Hz – 10 000Hz (mostly utilise 500-4000 Hz)

• Music 50Hz - 20 000Hz

Definitions (subjective correlations)

- Intensity = Loudness
- Frequency =
- Timbre =
- Localisation =
- Masking =

Pitch (musical) quality Spatial position One sound is selectively heard in preference to others

Timbre

• The fundamental frequency is the *lowest* note in a complex sound

• The *overtones* or *harmonics* are simple multiples of the fundamental frequency and are responsible for the quality of the sound

Definitions (subjective correlations)

Pitch

- Intensity = Loudness
- Frequency =
- Timbre =
- Localisation =
- Masking =

Musical quality Spatial position One sound is selectively heard in preference to others

• Conducting apparatus

- auricle - EAC - TM - ossicular chain - IE fluids -

Perceiving apparatus

- end-organ (Corti) - VIII - cerebral cortex -

External ear

• Pinna / auricle

• Skin covered cartilage

• "Directs" sound into EAC

External ear canal

• Skin covered cartilage and bony canal

• Channels acoustic energy to TM

Tympanic membrane

• 3 layers:

– Squamous epithelium

fibrous tissue

-Respiratory mucous membrane

Middle Ear

• Contains:

malleus incus	_	hammer anvil
	_	
stapes	_	stirrup

• Small "auditory muscles"

Transformer

• Acoustic energy arrives at TM & is transmitted to the stapes footplate

area ratio TM : footplate = 14:1
lever effect of ossicles = 1,3:1

- overall "*transformer ratio*" = 18:1

- Amplitude of vibration at TM is reduced by the time it reaches the footplate
- Force entering fluids is increased in same proportion
- Widely differing acoustic resistances between air & fluid are matched
- Transfers maximum energy from air to fluid

 Stapedius & tensor tympani muscles reflexly contract above 90 dB

• This attenuates loud sound to protect IE against acoustic trauma

Impact / explosion noise reaches cochlea before reflexes can act – damage is worse than with steady state noise

• Sound is transmitted to IE in three ways:

1. Via the ossicular chain - most important

2. Bone conduction – through bones of the skull, sound energy taken up and transmitted to cochlea

3. Directly across ME – on to *round window* when there is TM perforation

 Airborne sound – vibrations of atmosphere – pass along the EAC to the TM - set in motion

• Transmitted to ossicles – which rotate around fulcrum & transmit vibrations to oval window

 Transmitted through oval window to perilymph in scala vestibuli around the helicotrema to round window (reciprocal movement)

• This sets up a travelling wave starting from the cochlea base & progressing toward the helicotrema with increasing amplitude

 There is a sharply defined region of maximum displacement – position depends on frequency

• High frequency – maximum displacement at basal turn of cochlea

 Low frequency – longer travelling wave with maximum amplitude nearer the helicotrema

- Vibrations displace basilar membrane shearing movement between hair cells and tectorial membrane – hairs displaced in relation to their bodies
- Not fully understood but this displacement results in neuronal stimulation - nerve impulses in VIII

Neuronal stimulation

• 3 main theories

• Attempt to explain conversion of all varied dimensions of sound

• Possible variations in nerve action potentials depend upon

Neuronal stimulation

 Particular nerve fibre being activated – place along *basilar membrane*

 Total numbers of fibres activated louder sound – more activated

 Threshold of individual fibres – majority of fibres have threshold 10-15 dB only a few above 80 dB

Internal Auditory Canal

• $\pm 1 \text{ cm long}$

• In petrous temporal bone

- Transmits V
 - VII
 - VIII
 - internal auditory art. & vein

Audiometry

• Pure Tone Audiogram (PTA) is the cornerstone of assessment of hearing

 Establishes subject's *pure tone hearing threshold* – the minimum sound level at which a specific response can be obtained

Audiometry

- Test 125, 250, 500, 1000, 2000, 4000, 8000 Hz (3000 & 6000 for noise-induced loss claims)
- Air conduction

 Bone conduction - not 125 & above 4000 as unreliable
 indication of cochlea function

Audiometry

- Soundproof room
- Earphones / bone conductor
- Subject signals by pressing button
- Pure tones produced by calibrated audiometer
- Intensities - 20 dB

+ 110 dB

Normal audiogram

Speech vs Pure tone

- Main function of human ear is perception of spoken word
- Speech consists of very complex sound
- Varying frequencies fundamentals & harmonics
- Vowels & consonants
- Accents
- Languages

Speech vs Pure tone

• PTA is not always good assessment of *speech discrimination*

• *Speech Audiometry* measures actual disability produced by any hearing loss

Definitions (subjective correlations)

Pitch

- Intensity = Loudness
- Frequency =
- Timbre =
- Localisation =
- Masking =

Musical quality Spatial position One sound is selectively heard in preference to others

Localisation - Binaural hearing

- differences in time of arrival (10-20µs)
- differences in intensity at two ears
- phase differences (at less than 1500Hz)

Localisation - Pinnae

spectrum of sound entering ear modified by pinna in a way that depends on direction of sound source

Localisation - Precedence effect

Many different paths

- direct

- reflected (echoes)

Several sounds in close succession are the direct sound & its echoes. These are perceptually fused and the location of the total sound is determined by the combination of the direct sound and its echoes.

Complex?

Fascinating?

Want to know more?