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v INTRODUCTION

The k nearest neighbour (kNN) algorithm is one of the easiest machine learning algorithms to
understand and implement. It can be used for classification and regression problems. In the
former, the target variable is categorical. In the latter, it is numerical.

In this notebook we explore the k nearest neighbour machine learning (ML) algorithm. We start

of with a simple example of classification before embarking on solving a more realistic problem.

Along the way we will learn a lot of the basic concepts of ML. We end with a small example to
help us understand how to use kNN in a regression problem.

To note upfront, for the same objects, ML uses different names than we use in statistics.
Independent variables are referred to as feature variables or simply features. The dependent

variable is termed a target variable or an outcome variable (or simply a target or an outcome. If

the target variable is categorical, then the sample space elements are termed classes.

v PACKAGES USED IN THIS NOTEBOOK

The following packages will be used in this notebook.

1 import numpy as np
2 from pandas import DataFrame, Series, read_csv
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from sklearn.datasets import make classification

from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor

from sklearn.model selection import train test split, cross_val score, GridSearc
from sklearn import metrics

U s W N

from sklearn.preprocessing import StandardScaler

import plotly.graph objects as go
import plotly.express as px
import plotly.io as pio

B W N R

pio.templates.default = 'plotly white'

import matplotlib.pyplot as plt
import seaborn as sns

N =

1 3config InlineBackend.figure format = "retina" # For Retina type displays

1 # Format tables printed to the screen (don't put this on the same line as the c«
2 %load _ext google.colab.data table

1 from google.colab import drive # Connect to Google Drive

v THE NEAREST NEIGHBOURS CONCEPT

v k NEAREST NEIGHBOUR CLASSIFICATION

The k nearest neighbour classifier classifies an observation based on the classes in its vicinity.
Vicinity infers distance. With this ML algorithm, we measure a distance between observations.

There are various ways to define distance. Euclidean distance (a straight line on a flat surface) is
most familiar to us. We consider a single numerical variable (for a featuare variable) and two
classes (for a binary target variable). The code below generates a pandas dataframe object, with
two appropriately named variables.

1 np.random.seed(42)

2

3 df = DataFrame(

4 {'Feature':np.random.randint (10, high=20, size=7),
5 'Target' :np.random.choice(['A', 'B'], size=7)}

6 )

7 df
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1to 7 of 7 entries 0

index Feature Target
0 16 A
1 13 A
2 17 A
3 14 B
4 16 A
5 19 B
A 12 R

With the random seed set as 42, we note four observations belonging to group A and three to
group B.

A scatter plot can be used to visualise this single variable for two classes. Note that two

observations in group A have a feature variable value of 16.

1 single dim fig = go.Figure(
go.Scatter(

0 N o U1 b W N

9
10
11
12
13
14
15
16
17
18
19
20
21

)

x=df.loc[df.Target == 'A'].Feature,
y=[0, 0, 0, O],

name='A"',

mode="'markers',

marker={'size':20}

) -.add_trace(
go.Scatter(

)

x=df.loc[df.Target == 'B'].Feature,
y=[(0, 0, 0],

name='B"',

mode="'markers',

marker={'size':20}

) .update layout(

title='Variable values for two classes',
xaxis={'title':'Variable value'}

22 single dim fig
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Variable values for two classes

0.5
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Distance, d, between any two values, x| and x»,, for this single dimension (all values are on a
single axis) is given in (1). Distance is always a positive value, hence we take the absolute value
of the difference for two points x; and x».

d=|x; — x| 9
-1

The distance between 12 and 19 is therefor [12 — 19| = |-7| = 7.

Now we introduce an unknown observation with a value of 12.5. The k in k nearest neigbours is
an integer (whole number) reflecting the number of neighbours to an observation. It is set at an
odd value. In this instance, we shall say k = 3.

1 single dim fig.add trace(

2 go.Scatter(

3 x=[12.5],

4 y=[01,

5 name='Unkown class',
6 mode="'markers',

7 marker={'size':20}

8 )

9)

10

11 single dim fig
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Variable values for two classes

0.5
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The three nearest neigbours are 12, 13, and 14. The distance to these nearest (closets)
neighbours are [12.5 — 12| = 0.5,]12.5 — 13| = 0.5,and |12.5 — 14| = 1.5.

We note that the classes for these three nearest neigbours are group B, group B, and group A.
Since we chose an odd number of neighbors, we can simply take a majority vote. This would be
group B. The k nearest neighbour classifier would therefor classify this new observation as
belonging to target class B.

If we add another numerical variable, we can plot the data as a scatter plot in the plane. We do
this below after adding another random set of values.

1 np.random.seed(42)
2
3 df[ 'Feature2'] = np.random.randint (100, 200, 7) / 10

1 df
1to 7 of 7 entries 0
index Feature Target Feature2

0 16 A 15.1
1 13 A 19.2
2 17 A 1.4
3 14 B 17.1
4 16 A 16.0
5 19 B 12.0
6 12 B 18.2

Show per page

1 two dim fig = go.Figure(
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2 go.Scatter(

3 x=df.loc[df.Target == 'A'].Feature,
4 y=df.loc[df.Target == 'A'].Feature2,
5 name="'Group A',

6 mode="'markers',

7 marker={'size':20}

8 )

9 ).add trace(

10 go.Scatter(

11 x=df.loc[df.Target == 'B'].Feature,
12 y=df.loc[df.Target == 'B'].Feature2,
13 name="'Group B',

14 mode="'markers',

15 marker={'size':20}

16 )

17 ).update_ layout(

18 title='Variable values for two classes',
19 xaxis={'title': 'Feature value'},

20 yaxis={'title':'Feature 2 value'}

21 )

22

23 two_dim fig

Variable values for two classes

20

19 "’
s @

17 ‘.'

16

15

Feature 2 value

14
13
12

11
12 13 14 15 16 17

Feature value

The equation for the Euclidean distance in the plane (two dimensional space) is the
Pythagorean Theorem and is shown in (2) for two points in the plane, P; = (x1, y;) and
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P, = (x2, y2).

d (P, P2) = 3/ (i = %2 + (31 = y)? @)

We are only interested in the positive value of the square root. Since both expressions in the
square root are squared, we will always have a value of greater than or equal to O and can
therefor take the square root.

A new observation with values Feature = 14 and Feature2 = 18 is shown below.

1 two_dim fig.add_trace(

2 go.Scatter(

3 x=[141],

4 y=1181,

5 name='Unkown class',
6 mode="'markers',

7 marker={'size':20}

8 )

9 ).update_ yaxes(

10 scaleanchor="'x",

11 scaleratio=1,

12 ) # For same x and y axis scale
13

14 two_dim fig
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Variable values for two classes

The nearest k = 3 neigbours are group A, group B, and group B. This unknown observation is
therefor classified as belonging to group B. Below, we set up a function to calculate this
distance and use it for the three nearest neighbours.

13 - W

def dist 2D(x1l, yl, x2, y2):
distance = np.sqgrt((xl - x2)**2 + (yl - y2)**2)
3 return distance

N =

[\

1 dist 2D(14, 18, 14, 17.1) # Group B observation

0.8999999999999986
12

1 dist 2D(14, 18, 13, 19.2) # Group A observation

1.5620499351813304

-

1 dist 2D(14, 18, 12, 18.2) # Group B observation

2.009975124224178

All other observations are further away.

The scikit-learn package has many ML algorithms including a k nearest neighbour classifier (for
classification problems). We will use this classifier in an example. First, though, we will use the
make classification function from the datasets module of scikit-learn. This function
generates random value datasets for ML tasks. The code comment explains the arguments
used. The documentation for this function list all the other arguments, which we will leave at
their default values.

ke

y = make classification(
n_samples=200, # Number of observations
n features=5, # Number of features
n_informative=3, # Number of features that are informative as to the class
n_redundant=2, # Number of redundant feautres
n _classes=2, # Setting a binary target variable
flip y=0.1, # Flip 10% of the observations to the other class
random state=42 # Seeding the pseudo-random number generator

O 00 6 U1 b W N K

~

The function returns two arrays, which we have assigned to the commonly used variable x for
the set of feature variables and y for the target variable. It is worthwhile to look at the type of

https://colab.research.google.com/drive/1 WarKVx_DePiOItY Y WQt72 AUobvFnrFL-#scroll To=joTOP97z3DPv&printMode=true 8/38



16/07/2021 13MachineLearningKNN.ipynb - Colaboratory

objects assigned to these variables and their dimensions.

1 type(X) # X is a numpy multi-dimensional array

numpy .ndarray

1 X.shape # Shape attribute shows 200 observations and 5 variables

(200, 5)

1 X.dtype # Values are 64-bit floating point values (decimals)

dtype('float64’')

1 type(y) # y is also a multi-dimensional array

numpy .ndarray

1 y.shape # y contains 200 observations

(200,)

1l y.dtype # Two classes encoded as the 64 bit integers 0 and 1

dtype('int64")

We can use this random data to build a dataframe object.

1 df = DataFrame(

2 X,

3 columns=[ 'Featurel', 'Feature2', 'Feature3', 'Featured4', 'Feature5']
4)

5

6 df[ 'Target'] = y # Adding target variable

7

8 df[ 'TargetClass'] = Series(

9 Y

10 dtype='category'

11 ) # Adding the target variable again, but specifying it to be categorical
12

13 df[:5] # First 5 rows
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A AARAAA~A=TAAAAA= 4= 4

1 to 5 of 5 entries | Filter 0

The describe method shows the summary statistics for the variables in the dataframe object.

A AFAAAAAA=AAA A 44N

!= 'Target'].describe() # Exclude the Target variable from

1 to 8 of 8 entries 0

index Feature1 Feature2 Feature3 Feature4
count 200.0 200.0 200.0 200.0
mean -0.09833682324423682 -0.34922631298570556  0.5029790825544116 -0.3633490353368696
std 1.4086800247418874 1.247183864021313  1.3480167072065572 1.5428315184855816
min -2.6232015869643073 -3.3774522470036055 -3.0091656985521182 -3.5905749411939913
25% -1.2193563041690803 -1.1259661421673064 -0.36965072566327484 -1.5320908502265194
50% -0.4464383691151155  -0.3829483773567014  0.6091655741127562 -0.5583745813634604
75% 0.8653559587494459 0.32653717620846257  1.5714875659807324 0.4450394048030798
max 4.598515378881905  3.2923727832868823 3.531827006207995  4.408265352517448
Show |25 v |per paae

A scatter plot matrix shows us the correlation between each set of feature variables for each of

the two classes.

1 px.scatter matrix(

2
3

4
5
6

df,

dimensions=[ 'Featurel',

'Feature2',

'Feature3',

'Featured',

'Feature5'],

color='TargetClass', # The categorical version of the target variable

title='Scatter plot matrix'
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Scatter plot matrix

To use the k nearest neighbour classifier, we instantiate it and specify a value for k. We choose
k = 5. There are more arguments available for this classifier, but we leave these at their default

values.
= v T - Yy, “-Xy ]
1 neigh = KNeighborsClassifier(
2 n_neighbors=5
3)
ICII_) — < - n.-‘ ™ [ ] '.-"- aT e .-'" U |

Next up we fit the data to the instantiated classifier, using the £it method.

® VY CARellt LIRS . . " -
1 neigh.fit(
2 X, # The multi-dimensional numpy array of feature variable valuess
3 y # The numpy array of target variable values

4)
KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',

metric_params=None, n_jobs=None, n_neighbors=5, p=2,
weights="'uniform')

The predict method allows us to pass values for an unknown observation and see which class
the fitted classifier predicts.

1 np.random.seed(7)

2 unkown obs = np.random.randn(5).reshape(l, -1) # A single observation with 5 ra:
3

4 neigh.predict(unkown obs)

array([1])

We see a predicted target class of 1. The predict proba method will return the probability for
each target class given an observation.

1 neigh.predict proba(unkown obs)

array([[0., 1.11])

Class 1 was predicted with a 100% probability.

v DATA SPLITTING
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While we have trained a classifier, we are not sure how well it does. In most ML applications, we
randomly split the dataset into a training set and a test set. The model trains of the former (as
we did above). The latter is not used in the training, but is kept for obtaining metrics on our
model.

This approach allows us to gauge how well a ML model might do on unseen data. This is of
obvious importance, as we want to use our model on new data and have it perform well.

This brings with it the concepts of variance and bias, pertaining to how well the data does on the
trainig set and how well it performs on unseen data.

High variance refers to a model that does very well on a training set. Such a model overfits the
training data and might very well do poorly on unseen data. A model with high bias does rather
worse on the training data. To some extent there is a trade-off between these.

A variety of factors influences variance and bias. The sample size is key. The more training data
we have in ML, the better the model usually performs. Aspects such as the value of k in our
example is termed a hyperparameter of the model. It is something about the model that we
choose and must set. Note that there are techniques that can be used to let our computer
search for the best hyperparameter values.

Below, we split the data into a 80% training set and a remainder of 20% test set. There is a trade-
off here too. More data in the test set gives us a better indication of how well it will do on
unseen data. We do then, however, take away observations that could have been used for
training.

The train_test_split function takes various arguments. Below, we set the required
arguments. This includes test_size set as a fraction of all the observations. We use the
commonly used computer variables for the split data. The names are rather explanatory.

1 X train, X test, y train, y test = train test split(

2 X,
3 Y

4 test size=0.2,
5 random_ state=42
6)

It is important to know that we have a fair representation of the classes in both sets. If not, we
have unbalanced sets. This is a particulary interesting problem requiring its own solutions. The
numpy unique function returns the sample space elements in an array. With the

return counts argument setto True, we also get a frequency count of each class.
https://colab.research.google.com/drive/1 WarKVx_DePiOItY Y WQt72 AUobvFnrFL-#scroll To=joTOP97z3DPv&printMode=true 12/38
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1 np.unique(

2 y_train,

3 return_ counts=True
4

(array([0, 1]1), array([83, 77]))

1 np.unique(

2 y_test,

3 return counts=True
4

(array([0, 1]), array([18, 22]))

There is a fair representation of each class in both the training and the test sets.

Now, we train the classifier again (still with k = 5).

1 neigh = KNeighborsClassifier(

2 n_neighbors=5

3 ) # Instantiate with k=5

4

5 neigh.fit(

6 X train,

7 y_train

8 ) # Train on the training data

KNeighborsClassifier(algorithm="auto', leaf size=30, metric='minkowski',
metric_params=None, n_jobs=None, n neighbors=5, p=2,
weights="'uniform')
v METRICS

Given our trained model, we can now pass the unseen test set of feature variables to the model.
The predicted target classes are assigned to the computer variable y pred below.

1l y pred = neigh.predict(X test)

We can now use the predicted target classes to check on various metrics. One important metric
is the accuracy. It returns the fraction of values that were precidicted correctly. We use the
accuracy_score function from the metrics module of the scikit-learn package. As arguments,
we pass the actual test target values, y_test, and the predicted classes for each test
observation, y_pred

1 metrics.acenracv scorel
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B I e T \

2 y_test,
3 y_pred
4)

0.9

Our model is 90% accurate on the unseen data.

A confusion matrix expresses the accuracy by showing the correctly and incorrectly predicted
instances. The information in a confusion matix is clear to understand when plotted. We do this
with the plot confusion matrix function from the metrics module of the scickit-learn
package.

1 metrics.plot confusion matrix(neigh, X test, y test);

True label
A O

N

Predicted label

We see the true class labels along the left edge and the predicted class labels on the bottom
edge. Looking at the plot, 17 class 0 observations in the test set were correctly predicted by the
model as class o, with 19 class 1 observations correctly predicted. Three actual class 1
observations were incorrectly predicted to be class 0 and a single actual class 0 case was
incorrectly prected to be class 1.

What if we changed the k hyperparameter to be 3?

neigh = KNeighborsClassifier(
n_neighbors=3
) # Instantiate with k=3
neigh.fit(
X train,
y_train
) # Train on the training data

N O O W N

KNeighborsClassifier(algorithm="auto', leaf size=30, metric='minkowski',
metric_params=None, n_jobs=None, n neighbors=3, p=2,
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weights='uniform')

The confusion matrix plot shows that we did a bit better.

1 metrics.plot confusion matrix(neigh, X test, y test);

20.0

17.5

15.0

12.5

10.0

True label

7.5

5.0

25

Predicted label

The accuracy is now up t0 92.5%.

1l y pred = neigh.predict(X test)

2

3 metrics.accuracy_ score(
4 y_test,

5 y_pred

6 )

0.925

~ k NEAREST NEIGHBOURS CLASSIFIER DATA SCIENCE EXAMPLE

v~ DATA IMPORT

In this example we take a data set that can be downloaded from the internet. It contains
observations for variables pertaining to the microscopic investigation of cells from breast
lumps. Some of the observations are benign (non-canceorus) and some are malignant
(cancerous). The spreadsheet file is contained in the data subfolder on this Google Drive.

1 #drive.flush and unmount()

1 # Connect to Google Drive

2 drive.mount('/gdrive', force_ remount=True)
3
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4 # Change directory to the DATA folder
5 %cd '/gdrive/My Drive/Stellenbosch University/School for Data Science and Compui

/gdrive/My Drive/Stellenbosch University/School for Data Science and Computat

1 # Import the spreadsheet file

2 df =

1 # First five observations

read _csv('breast cancer.csv')

id diagnosis radius_mean

2 df[:5]
0 842302
1 842517
2 84300903
3 84348301
4 84358402

£ £ £ £ £

17.99

20.57

19.69

11.42

20.29

10.38

17.77

21.25

20.38

14.34

texture_mean perimeter_mean

122.80

132.90

130.00

77.58

135.10

area_mean

1001.0

1326.0

1203.0

386.1

1297.0

S

The info method gives us information about the dataframe object and the variable data types.

We note that diagnosis is an object data type (a categorical variable).

1 # Information about the DataFrame object

'pandas.core.frame.DataFrame'>

569 entries, 0 to 568

Data columns (total 33 columns):

2 df.info()
<class
RangeIndex:
#  Column
0 id
1 diagnosis
2 radius_mean
3 texture mean
4 perimeter mean
5 area_mean
6
7
8 concavity mean
9
10 symmetry mean
11
12 radius_se
13 texture_ se
14 perimeter se
15 area_se
16 smoothness_se
17

https://colab.research.google.com/drive/1 WarKVx_DePiOItY Y WQt72AUobvFEnrFL-#scroll To=joTOP97z3DPv&printMode=true

smoothness_mean

compactnes S_mean

concave points_mean

fractal dimension mean

compactness_se

Non-Null Count
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null
569 non-null

object

float64
float64
float64
floaté64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
float64
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18 concavity_se 569 non-null floaté64
19 concave points_se 569 non-null float64
20 symmetry se 569 non-null floaté64
21 fractal dimension_se 569 non-null float64
22 radius_worst 569 non-null float64
23 texture worst 569 non-null float64
24 perimeter worst 569 non-null float64
25 area_worst 569 non-null floaté64
26 smoothness worst 569 non-null float64
27 compactness_worst 569 non-null float64
28 concavity worst 569 non-null float64
29 concave points worst 569 non-null float64
30 symmetry worst 569 non-null floaté64
31 fractal dimension worst 569 non-null float64
32 Unnamed: 32 0 non-null float64

dtypes: float64(31), int64(1l), object(1l)
memory usage: 146.8+ KB

We can delete the id and the unnamed: 32 columns as it serves no purpose.

1 df.drop(

2 ['id', 'Unnamed: 32'],
3 axis=1,inplace=True
4)

v DATA SUMMARY

There is a known class imbalance in this dataset, with more benign disease than malignant
disease. We can visualize and enumerate this.

1 px.bar(
df,
x='diagnosis',
title='Frequency of the diagnosis classes',
labels={
'diagnosis':'Diagnosis (M for malignant and B for benign)'

0 N o U1 b W N
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Frequency of the diagnosis classes

120k

100k

80k

60k

The fraction of each target class can be calculated using the value counts method and
setting the normalize argumentto True.

1 df .diagnosis.value counts(normalize=True)

B 0.627417
M 0.372583
Name: diagnosis, dtype: float64

IUYIIVOIO (171 TV 1INy LI IL U Y 1V valiy

The describe method is used to give a summary of the rest of the variables. The loc indexing
is used to exclude the categorical target variable.

1 np.round(

2 df.loc[:,df.columns!="'diagnosis'].describe(),
3 1

4 ) # Rounding to a single secimal place

radius_mean texture_mean perimeter_mean area_mean smoothness_mean «

count 569.0 569.0 569.0 569.0 569.0
mean 141 19.3 92.0 654.9 0.1
std 3.5 4.3 243 351.9 0.0
min 7.0 9.7 43.8 143.5 0.1
25% 1.7 16.2 75.2 420.3 0.1
50% 13.4 18.8 86.2 551.1 0.1
75% 15.8 21.8 104.1 782.7 0.1
max 28.1 39.3 188.5 2501.0 0.2
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All the feature variables are numerical variables (for the kNN classifier). We can generate a
correlation matrix to investigate the correlation between all pairs of feature variables, using the
corr method.

1 correlation = df.corr()
2 np.round(correlation, 2) # Rounding to two decimal places
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radius_mean texture_mean perimeter_mean area_mean sm

radius_mean 1.00 0.32 1.00 0.99
texture_mean 0.32 1.00 0.33 0.32
perimeter_mean 1.00 0.33 1.00 0.99

We can visualize these correlations with a heatmap using the matplotlib package.

smoothness_mean 0.17 -0.02 0.21 0.18
1 plt.figure(
2 figsize=(21, 9)
3)
4 plt.title('Correlation of features')
5 ax = sns.heatmap(
6 correlation,
7 vmin=-1,
8 vmax=1,
9 center=0,
10 cmap=sns.diverging palette(20, 220, n=200),
11 annot=True,
12 fmt="'.2f",
13 linecolor="'white'
14 )
15 ax.set xticklabels(
16 ax.get xticklabels(),
17 rotation=90
18 )

19 plt.show();

https://colab.research.google.com/drive/1 WarKVx_DePiOItY Y WQt72 AUobvFnrFL-#scroll To=joTOP97z3DPv&printMode=true 20/38



16/07/2021 13MachineLearningKNN.ipynb - Colaboratory

Correlation of features
0.170.15 0310 -0.10 FEFAENA -0.22 021 019 [038'-0.10 -0.04 %R} NETY 0.2 [041 105307 016 001
taxture mean - 032 BN 033 032 -0.02 024 030 029 007 -0.08 028 039 028 026 001 019 014 016 0.01 005 035 034 0,08 028 030 030 011 012
perimeter mean S0 033 BUNEEN 021 RERONPAOREY 0.18 -0.26 (1 -0.09 UEMNZN 020 025 0.23 041 .06 -0.01 JUkZA 030 JUEZAOE! o. LT 019 003
area_ mean JUEe] 032 [REEIRENY 0. (GENOEY 015 0,28 0%E] -0.07 (RENRERR -0.07 021 021 037 -0.07 -0.02 0.14 0.00
smoothness mean - 017 DS 01 030 007 030 025 033 032 025 038 020 028 021 0.04 024 021 [ 039
005 (N8 0.74 057 064 [OFH] 025 [ 057 087 082 082
concavity mean -Uih 030 fUrFAL) 88 1.00 092 [E0N0ET 0,63 [0 010 PEAOEERYY 0.8 o ML) 0.73 068 OZH 075 088 086
concave points mean U674 029 EER) 83 092 100 0.70 002 JONEY 0.03 062 FOROR 0.3 KPE 0.86 081 [OZER 067 075 091

radius_mean

compactness_mean .24 40 66 1.00 088 0.83 060 057

symmetry_mean - 015 007 0.18 0.15 Rl 013 031 022 019 042 034 039 033 019 009
fractal_dimension_mean --0.31 -0.08 -0.26 -0.28 WL ETE 034 0.17 N8 0.00 0.16 0.04 -0.09 0.40 0.34 0.35 [EER-0.25 0.05 -0.21 0.23 035 018 033
radius_se 1A 0.28 JIERINER 0.30 (AERONON 0,301 0.00 BRIY 0.21 UAN 016 036 0.33 024 0.23 J0¥PA 0.19 [ORPRNNER 0.14 029 0.38.0‘09

v DATA SPLITTING
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Before we split the data into a training and a test set, we need to separate the features variables

from the target variable.

T memcvvemen e e vemen T e v e . e
y = df.diagnosis # The target variable
X = df.drop(

[ 'diagnosis'],
axis=1

N o O W N
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We use the train_test_split function again to split 20% of the data as a test set.
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1 X train, X test, y train, y test = train test split(

2 X,

3 Yr

4 test size=0.2,
5 random state=12
6)

We review the dimensions of the training and test sets.

1 X train.shape, X test.shape

((455, 30), (114, 30))

1l y train.shape, y test.shape

((455,), (114,))

v DATA SCALING
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Scaling data is an important step in ML. It puts all the variables within a similar numerical
interval. This has advantages for the training step of many ML algorithms. There are various
ways to scale data. Here, we will use standard scaling, where the mean of a variable is
subtracted from each value in that variable and this difference individed by the standard
deviation of that variable, shown in (3), where z is the scaled value, x; is each value for the
variable, X is the mean and s x the standard deviation of the variable.

z="= (3)

To use this scaler, we instantiate the class.

1 # Generating an instance of the StandardScaler class with default argument wvalus
2 scaler = StandardScaler(

3 copy=True,

4 with mean=True,
5 with std=True

6 )

The training set is first fitted and then transformed (in one step) to the scaler using the
fit transform method.

1 X _train = scaler.fit_ transform(X_train)

The test data is transformed with the attributes of the scaling of the training set. This is very
important. The test set must not be scaled using its own mean and standard deviation.

1 X test = scaler.transform(X test)

v~ TRAINING

We follow the same steps as used in our initial introduction to the kNN classifier. We will use
k = 3 as hyperparameter value.

1 # Instantiating the classifier with k=3
2 knn = KNeighborsClassifier(

3 n_neighbors=3

4)

1 # Fit the training set
2 knn.fit(
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3 X train,
4 y_train
5)

KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_ neighbors=3, p=2,
weights='uniform')

v METRICS

The confusion matrix plot shows how well the model faired when using the unseen test data.

1 metrics.plot confusion matrix(

2 knn,

3 X test,
4 y_test
5)7

True label

B M
Predicted label

The accuracy is calculated below using the accuracy score function.

1 metrics.accuracy_ score(

2 y_test,
3 knn.predict (X test)
4)

0.9473684210526315

We compare this to the accuracy of the model using the training set, this time using the
alternative approach of the score method of the model.

1 knn.score(

2 X train,
3 y_train
4)
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0.978021978021978

This gives the same result as the accuracy score function.

1 metrics.accuracy_score(

2 y_train,
3 knn.predict (X train)
4)

0.978021978021978

There is definitely some overfitting (high variance) as the model does better on the training data
than on the test data.

We can also look at the balanced accuracy score using the balanced accuracy score
function. This metric allows for class imbalance.

1 metrics.balanced accuracy score(

2 y_test,
3 knn.predict (X test)
4)

0.9375

This score is still much better than the null score, which is the fraction of the majority class.
Since y_test is a pandas series object, we can use the value counts method with the
normalize argument setto True.

1 # Null or baseline score based on proportion majority class
2 y test.value_ counts(

3 normalize=True

4)

B 0.578947
M 0.421053
Name: diagnosis, dtype: float64

The majority class in the test set is B (benign disease), with a fraction of 0.58. If we simply use
the majority class as predictor, we would be correct 58% of the time. Our model therefor
improves our prediction.

There are other more important metrics such as the sensitivity (recall), the specificity, the
positive predictive value (precision), and the negative predictive value. All of these required us to
understand the concepts of true and false positive and negatives.
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The two classes in our target variable for the current example is B for benign and m for
malignant. As data scientists, we choose one of these classes as our class of interest, i.e. the
one that we want to predict. In this case, it can be M. Given an unknown new observation (set of
values for all the feature variables), the model will predict m with some probability. We can set a
threshold on the interval [0, 1]. If the probability for m is above the threshold, the model
predicts M, else it predicts B. We can set this threshold depending on how costly mistakes (in
either direction) are given the cicumstances in which the model is used. By default, the
threshold is 0.5.

If we look at the first observation in the test set, we note that its true class was M.

1y test.iloc[0]

IMI

We can use the first row in the feature set to see what the model predicts.

1 knn.predict(X_test[0].reshape(l, -1))

array(['M'], dtype=object)

So, if our class of interest was M, then the model's prediction would be termed a true positive.
Here positive refers to the class of interest. If the predicted class was B, this would be a false
negative. Here negative is assigned purely on our research approach and which class we are
interested in.

If the true class was B and the model predicted a B, then this would be a true negative. If it
predicted M, though, it would a false positive.

The following abbreviations are often used. The values from our last confusion matrix plot are
added under the assumption of M being our positive class.

Metric Abbreviation Example value
True positive TP 42
True negative TN 66
False positive FP 0
False negative FN 6

The equations for our four new metrics are shown in (4), where PPV is positive predictive value
and NPV is negative predictive value.
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sentitivity (recall) = P
i TP+ FN
it TN
SpECIIIC1 e —
P Y= TN+ FP W
TP
PPV (precision) = ———
TP+ FP
TN
NPV = TN T FN

Recall is then the fraction of true positive cases predicted as such by the model. Specificity is
the fraction of true negative cases predicted as such by the model. Precision is the fraction of
cases that were correctly predicted as positive over all the cases that were predicted as positive.
Negative predictive value is the fraction of cases that were truely negative over all the cases
that were predicted to be negative.

These metrics are domain specific. In healthcare for instance, the sensitivity
(more often used in this setting than the Data Science term recall) is the ability of
a test to return a positive result given all truely positive cases. Sensitivity is the
ability of a test to correctly identity truely negative cases. Positive predictive value
(more often used in this setting than the Data Science term precision) is used
after the test returns a positive result and expresses the probability of the actual
result being positive. Finally, negative predictive value is also used after a test is
done and expresses the probability of a negative result actually being negative.

Another metric is the f1 score. This reflects the balance between the precision and recall, as
shown in (5).

precision X recall TP
precision + recall  Tp 1 L(FP + FN)

Ji=2X &)

Some of the metrics are returned using the classification_report function.

1 print(metrics.classification report(
2 y_test,
3 knn.predict (X test)

4))

precision recall fl-score support
B 0.92 1.00 0.96 66
M 1.00 0.88 0.93 48
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accuracy 0.95 114
macro avg 0.96 0.94 0.94 114
weighted avg 0.95 0.95 0.95 114

We have raised the question as to when a value is predicted as a certain class. The kNN
algorithm produces a probability for each class (the fraction of actual k classes in the
neighbourhood of an observation. Since we are dealing with an odd number of neigbours, the
majority class in this neigbourhood rules. Below, we look at the first 10 probabilities predicted
from the test set feature variables.

1 knn.predict proba(X test)[0:10]

array([[O. ¢ 1. 1.
[1. + 0. 1.
[1. + 0. 1,
[1. , 0. 1,
[1. , 0. 1,

[0.66666667, 0.33333333],
[0.66666667, 0.33333333],

[1. , 0. 1/
[0.66666667, 0.33333333],
[0. r 1. 11)

For most cases all three nearest neighbours were of the same class, but in three of them only
two of the neighbours were of the same class.

Given larger values of k we will see different probabilities. Below, we choose k = 7 and look at
the accuracy metric and at the first 10 observation probabilities again.

1 # Instantiate the classifier
2 knn_7 = KNeighborsClassifier(
3 n neighbors=7
4

# Train the model
knn_7.fit(
X train,
y_train

U s W N

KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=7, p=2,
weights='uniform')

# Accuracy on the test set
knn 7.score(

X test,

y_test

S W N R

w

)
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0.956140350877193

We get an improved accuracy.

1 knn_7.predict proba(X test)[0:10]

array([[O. , 1. 1,
[1. , 0. 1,
[1. , 0. 1
[1. , 0. 1,
[1. , O. 1,

[0.85714286, 0.14285714],
[0.71428571, 0.28571429],
[1. , 0. 1/
[0.57142857, 0.42857143],
[0. ;L. 11)

Below, we generate a DataFrame object from these probabilities (using the test set).

1 probabilities = DataFrame

2 knn 7.predict proba(X_ test),
3 columns=[ 'B', 'M']

4)

5

6 probabilities[:10]

1 to 10 of 10 entries 9
M

index B
0 0.0 1.0
1 1.0 0.0
2 1.0 0.0
3 1.0 0.0
4 1.0 0.0
5 0.8571428571428571 0.14285714285714285
6 0.7142857142857143 0.2857142857142857
7 1.0 0.0
8 0.5714285714285714 0.42857142857142855
9 0.0 1.0

Show per page

We can now create a bar chart to show the frequency of each probability for the M class.

1 px.bar(

2 np.round(probabilities, 2),

3 x="'M",

4 title='Frequency of probabilities for malignant class',
5 labels={'M': 'Probabilities of M'}

6 ) .update xaxes(
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/ tType= category

8 )

Frequency of probabilities for malignant class

3500
3000
2500
2000
1500
1000

500

———— —
0.14 0.29 0.43

Probabilities of M

All the observations that had a probability of m greater than 50% (0.5) is predicted to be M by
the model. What if we change this threshold, though? This can be done depending on how
expensive mistakes are. If it is costly to miss a positive results, then we can set the threshold
lower so that more observations are predicted to be positive. The meaning of the term expensive
is determined by the setting of the Data Science project.

A receiver operator characteristic (ROC) curve presents a visual representation of different
thresholds. The x axis of this plotis 1 — specificity and the y axis is the recall. To use this plot,
we first calculate the required values using the roc_curve function.

1 fpr, tpr, thresholds = metrics.roc_curve(

2 y test.replace(['B', 'M'], [0, 11]),
3 knn 7.predict proba(

4 X test

5 YL, 11

6 )

Below, we use the matplotlib package to generate the curve.
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plt.plot(fpr, tpr, linewidth=2)

plt.plot([0,1], [0,1], 'o-=-")

plt.rcParams[ 'font.size'] = 12

plt.title('ROC curve kNN classifier')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')

0 4 o U b W IN R

plt.show();

ROC curve kNN classifier

o e e
S o o
L | A

True Positive Rate (Sensitivity)
o
N

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (1 - Specificity)

The orange dotted line represents a 50 : 50 chance. We want our curve to be higher than this
line, which indeed it is. For a specificity of just under 100% (to the left of the x axis), we get
almost 90% recall.

The area under the curve(ROC AUC) represents the ROC score. The closer the ROC AUC is to 1.0
the better the model performance. The roc_auc_score function calucates this area. Note that
we use the numpy where function to replace B with O and m with 1 since we need numerical
values.

1 metrics.roc_auc_score(

2 y_test.replace(['B', 'M'], [0, 11),

3 np.where(

4 knn 7.predict(X test) == 'B', 0, 1
5 )

6 )

0.9479166666666667

The ROC score or ROC AUC is 0.95, which is very good.

For both kNN classifiers (k = 3 and k = 7) we have only performed a single training step. We
might have been very lucky or unlucky in the random split of a training and a test set. It is better
to repeat this process many times over. This is termed cross-validation.
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v CROSS VALIDATION

With cross-validation we split the data repeatedly and measure performance metrics, over
which we average in the end. In k fold cross validation, we choose a number of folds. As an
example, we might choose kK = 5. Note that this is not the k of kNN. For a 5 fold cross
validation, the data is split into training and test sets five times, such that all the data is used for
training and testing.

When the scoring argument is setto accuracy, the cross val score function from the
model_selection module of the scikit-learn package returns the accuracy k number of times.

1 scores = cross_val score(

2 knn 7,

3 X,

4 Yr

5 cv=5,

6 scoring='accuracy'
7))

1 scores

array([0.87719298, 0.93859649, 0.94736842, 0.94736842, 0.92035398])

The average of these scores gives a better understanding of model performance on unseen
data.

1 np.mean(scores)

0.9261760596180716

1 np.min(scores), np.max(scores)

(0.8771929824561403, 0.9473684210526315)
There is quite a large range for these scores, indicating that the accuracy is very dependent on

which observations are in the training and the test sets. In this case, it is a function of the small
number of observations in the data set.

The final question in this section is which value of k for the kNN classifier is best. One method
for finding the optimal value is to perform a grid search.
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v GRID SEARCH FOR BEST HYPERPARAMETER VALUES

With a grid search we can explore the solution space for hyperparameter values. This process is
known as hyperparameter tuning.

The hyperparameters we will tune for the kNN classifier here are the leaf count, the number of
neighbours, and the distance metric. While we used Euclidean distance in this notebook, there
are other distance metrics too. This argument is set using the p value when instatiating the
classifier. The leaf count pertains to the search algorithm used for determining the closest
neighbours. The kNN classifier used in scikit-learn can use a few of these algorithms such as
the KD-tree algorithm or the ball-tree algorithm, or even a brute force approach.

To use a grid search, we set values to explore.

1 # Generate a Python list of leaf size values on the closed interval 1 through 4!
2 leaf size = list(range(l, 50))

3

4 # Generate a Python list of neigbour numbers on the closed interval 1 through 1!
5 n neighbors = list(range(l, 20))

6

7p = [1, 2]

We convert these lists to a dictionary.

1 hyperparams = {

2 'leaf size':leaf size,

3 'n_neighbors':n neighbors,
4 'p'ip

5}

Next we instantiate a new kNN classifier with default argument values.

1 knn = KNeighborsClassifier()

Now we perform the grid search, which will go through all the hyperparameter values when we
fit the data. We also use 5 fold cross validation. All of this can be computationally expensive
(consuming a lot a computer resources and taking a long time).

1 knn_grid_search = GridSearchCV(

2 knn,

3 hyperparams,

4 cv=5

5)

1T lhAar~d+ rmAarvAame~ — Trrnn ~ra1 A ~AAr~ Tl Fa4v
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L UCDL_PGJ_GIHD - J\llll_LJJ.J.u_DcaJ.\,’ll-J.J_l_\
2 X,

3 Yy

4)

The process took over 90 seconds on Colab.

Now we can print the best hyperparameter values using the best estimator.get params
method.

1 # Best leaf size
2 best params.best estimator .get params()['leaf size']

1 # Best number of neighbours
2 best params.best estimator .get params()['n_neighbors']

1 # Best distance metric
2 best params.best estimator .get params()['p']

Below, we use these hyperparameter values and 5 fold cross validation. Note that these may be
different every time you run the code. Below, we see the best parameter values generated during
a previous run.

1 knn best = KNeighborsClassifier(

2 n_neighbors=9,

3 leaf size=9,

4 p=1

5)

1 scores = cross_val score(
2 knn best,

3 X,

4 Y

5 cv=5,

6 scoring='accuracy'
7))

The average accuracy is now better than before.

1 np.mean(scores)
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~ k NEAREST NEIGHBOUR REGRESSION

The k nearest neighbour (kNN) algorithm can also be used for regression. Here the target
variable is a continuous numerical variable.

v GENERATING A DATA SET

To understand the basic concept of building a kNN regression model, we start by generating a
data set, with a single feaure variable, and then visualise the data.

X = np.arange(
start=1,
stop=11

X # A 10 element array

array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

array([ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20])

1 go.Figure(

2 go.Scatter(

3 x=X,

4 Y=Y+

5 name='Data’',
6 mode="'markers',
7 marker={

8 'size':20
9 }

10 )

11 ).update yaxes(

12 scaleanchor="x",
13 scaleratio=1

14 ).update layout(

15 title='Regression data',

16 xaxis={'title':'Feature variable'},
17 yaxis={'title':'Target variable'}
18 )
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v CREATING A MODEL

We instantiate a kNN regressor with k = 3 nearest neighbours. The leaf size, search method,
and distance measure arguments are left at their default values.

1 # Instantiating a kNN regressor with k=3 neighbours
2 knn = KNeighborsRegressor (

3 n neighbors=3

4)

v TRAINING THE MODEL

Next, we fit the data to the model for training.

1 knn.fit(

2 X.reshape(-1, 1),
3 Y

4)

KNeighborsRegressor (algorithm="'auto', leaf size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=3, p=2,
weights='uniform')
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v TESTING THE MODEL

We can now pass a value to the model to see what it predicts and then try to understand the
result.

1 knn.predict(np.array([5.5]).reshape(1l, -1))

array([10.])

We see a result of 10. We can plot this to visualize the prediction in view of the data.

1 go.Figure(

2 go.Scatter(

3 x=X,

4 Y=Y,

5 name='Data’,

6 mode="'markers',

7 marker={

8 'size':20

9 }

10 )

11 ).add_trace(

12 go.Scatter(

13 x=[5.5],

14 y=[101],

15 name='Unseen data',
16 mode="'markers',

17 marker={

18 'size':20

19 }

20 )

21 ).update yaxes(

22 scaleanchor="x",

23 scaleratio=1

24 ) .update_ layout(

25 title='Regression data',
26 xaxis={'title':'Feature variable'},
27 yaxis={'title':'Target variable'}
28 )
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The three nearest observations have target variable values of 9, 10, and 11. The average of this

is 10.

Target variable

v CONCLUSION

This notebook was an introduction to the world of machine learning using one of the most
interpretable algorithms. Through the examples, we have gained valueble knowledge of terms
used in machine learning, the construction of these models, and how to evaluate them.
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