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v INTRODUCTION

One of the most useful distributions is the F distribution, which we will use in this notebook.

Linear regression, t tests, and analysis of variance (ANOVA) are often used in the statistical
analysis of data. Linear regression creates a model from numerical variables. This model
predicts the value of a dependent variable based on one or more independent variables. A t test
compares the means of a numerical variable between two sets of observations, and ANOVA can
be used to compare the means of a numerical variable between more than two groups.

In this notebook, we explore these statistical methods, both by using simulations and
resampling, as well as using formal statistical tests. We look at how to create a simple linear
model and evaluate its interpretation., with repsect to the coefficient of determination, R?, and
the calculation of a p value based on the F distribution.

We also explore the use of the F distribution in t tests an in ANOVA. If some of these concepts
are unknown to you, then this tutorial is for you.

~ PACKAGES USED IN THIS NOTEBOOK

The following packages will be used in this notebook.
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import numpy as np
from scipy import stats
from scipy import special

S W N R

from pandas import DataFrame

import plotly.graph objects as go
import plotly.express as px

import plotly.figure factory as ff
import plotly.io as pio
pio.templates.default = 'plotly white'

U s W N

Some of the models that we will create require the data to be in a specific format. The patsy
package is excellent for data formatting. The statsmodels package provides functions with

which we will build our models.

1 from patsy import dmatrices
2 import statsmodels.api as sm

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/ testing.py:19: Futu

pandas.util.testing is deprecated. Use the functions in the public API at pan

v CORRELATION

We start to build some intuition about the change in one numerical variable given a change in

another numerical variable. In this case, we have a pair of values for each subject in a sample.
One of the variables is termed the independent variable and the other the dependent variable.

Below, we create a single independent and a single dependent variable. The former takes 50
samples from a uniform distribution on the interval [80, 100]. To generate the dependent
variable, we add some random noise to each value in the independent variable. This random
noise is taken from a normal distribution with a mean of 0 and a standard deviation of 5. We
also use the numpy round function and set its last argument value to 1 to indicate that we
want rounding to a single decimal place.

1 np.random.seed(7) # For reproducible results

2

3 # Generate two numpy arrays

4 independent = np.round(np.random.uniform(low=80, high=100, size=50), 1)
5 dependent = np.round(independent + np.random.normal(0, 5, 50), 1)
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A scatter plot, where each marker (dot) represent the value for each variable is shown below.
The independent variable is on the horisontal axis and the dependent variable is on the vertical

avie

1 go.Figure(data=go.Scatter (x=independent, y=dependent,

2 mode="'markers',

3 marker=dict(size=12))).update layout(title='Data',
4 yaxis=dict(title='Dependent variable'),

5 xaxis=dict(title='Independent variable'))
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We can clearly see that for any given subject the dependent variable value is higher if the
independent variable is higher. There is some correlation between the two variables, i.e. as one
changes so does the other.

We start by considering the variance in each of the two variables. Remeber that the variance is
the average squared difference between each variable value and the mean for that variable,
shown in (1) for a variable X, its data values Xx;, its mean X, and it sample size n. Remember
that this is the equation for a sample variance and that for a population variance, we divided by
the sample size only.
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The numpy sum function sums over the squares of all the differences. We use it below and then
divide by the sample size less 1.

1 np.sum( (independent - np.mean(independent))**2) / (len(independent) - 1)

27.3082

The numpy var function calculates this variance for us. The ddof is the degrees of freedom.
Since we only have one set of values (a single group in our sample), it is setto 1.

1 np.var(independent, ddof=1)

27.3082
The variance of the dependent variable is calculated below.

1 np.var(dependent, ddof=1)

51.59557551020409

Covariance is a measure of the variance between two variables, X (independent variable) and Y’
(dependent variable) combined, shown in (2).

Y xi—x)(i— )

n

cov(X,Y) = (2)

The numpu cov function returns a 2 X 2 covariance matrix. The top left and bottom right
entries shows the sample variance for each variable individually and the other two entries (same
value) is the covariance.

1 np.cov(independent, dependent)
array([[27.3082 , 26.88066122],

[26.88066122, 51.59557551]])

We note the 27.3 and the 51.6 which were the variances of the independent and the dependent
variables. The covariance is then 26.9.

We can use indexing to extract only the covariance.

1 np.cov(independent, dependent)[0, 1]
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26.880661224489803

Covariance gives us an idea of the direction of the relationship between the two variables. If the
covariance is positive, it indicates a positive relationship. This means as the values of one
variable increases, so does the other. If the covariance is negative, then the values of one
changes in the opposite direction.

Correlation is the strength of the linear connection or relationship between two numerical
variables. Correlation is expressed as a Pearson correlation coefficient, denoted by r, and
shown in (3), where s x and sy are the sample standard deviations of the two variables
(independent and dependent in this case).

. cov(X,Y) 3)

SxSy
We follow (3) to calculate the correlation.

1 np.cov(independent, dependent)[0, 1] / (np.std(independent, ddof=1) * np.std(dej

0.7161222698456383

The pearsonr function from the stats module of the scipy package returns r and the p value for

r.
lr, p= stats.pearsonr(
2 independent,
3 dependent
4)
5
6 r # Pearson correlation coefficient

0.7161222698456384

1 p # p value

5.017339543412483e-09

Note that the solution is 0.000000005. This is simply 0.

The correlation coefficient is on the interval [—1, +1]. Note that —1 reflects absolute negative
correlation (a perfect, in-step decrease in the dependent variable as the independent variable
increases). A value of +1 reflects an absolute positive correlation (a perfect, in-step increase in
the dependent variable as the independent variable increases).
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v PROBABILITY OF THE CORRELATION COEFFICIENT

We can use similar principles used in our last notebooks to simulate multiple experiments to
calculate a sampling distribution of correlation coefficients and a p value.

Under the null hypothesis there is no correlation between the two variables. We can shuffle the
values in the pairs.

Note that the numpy shuffle function only shuffles the array in place and we loose the original
data. Instead we simply use the choice function without replacement. We do so below for 5000
repeat experiments.

lr vals 0 = []

2

3 # Generating 5000 r values

4 for i in range(5000):

5 r vals 0.append(np.corrcoef (np.random.choice(independent, size=50, replace=Fa!
6 np.random.choice(dependent, size=50, replace=False

We view the sampling distribution of the r values and the r value from our original data.

1 ff.create distplot(

2 [r vals 0],

3 [ 'Correlation coefficients under the null hypothesis'],
4 curve type='normal'

5 ).add_trace(

6 go.Scatter(

7 x=[r, r],

8 y=[0, 1.5],

9 name='Correlation coefficient'
10 )
11 ).update layout(
12 title='Sampling distribution of correlation coefficients under the null hyp
13 xaxis=dict(title='Null hypothesis r values'),
14 yaxis=dict({'title':'Density'})
15 )
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Sampling distribution of correlation coefficients under the null hypothe
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To calculate the probability of our r value, we consider the fraction of simulated r values that
are greater than the r value for our given data.

1 r # Pearson correlation coefficient

0.7161222698456384

1 # Fraction of simulated r values larger than r from data
2 np.sum(np.array(r vals 0) > r) / len(r vals 0)

0.0

None of the simulated r values is greater than the r value from our original data, hence the
small (zero in this casse) p value. This is in keeping with the p value form the pearsonr

function.
v UNCERTAINTY IN THE CORRELATION COEFFICIENT

Next, we use bootstrap resampling of data pairs to calculate a confidence interval (the
uncertainty given our sample). First, we use the numpy stack function to combine the pairs of

variable values for resampling.

1 data = np.stack([independent, dependent], axis=1)
2 data # View the result of the stack function

array([[ 81.5, 73. 1,
[ 95.6, 86.6],
[ 88.8, 90.7],
[ 94.5, 105.7],
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99.6, 100.97],
90.8, 88.2],
90. , 99.6],
81.4, 82.6],
85.4, 85.9],

90. , 91.3],
93.6, 92.9],
96.1, 94.6],
87.6, 80.4],
81.3, 83.8],
85.8, 85.3],
98.2, 104.27],
84.3, 82.5],
89. , 79.5],

98.6, 98.1],
80.5, 89. 1,
92. , 90.1],
99. , 94.6],
84.6, 78.6],
91. , 85.7],
98.2, 96.7],
82.7, 76.81,
90.5, 98. 1,

L T s T s T e T e T e T e B B e T e T s T e B e T e T e B e T T e T T e T e T e T e T s T s T e T s T s T T T e T s T e T T e T e T s T B e T e T T B e B e I e B |

95. , 93.6],
93.4, 93.9],
89.4, 96.6],
84.1, 91.6],
89.8, 88.7],
87.4, 89.1],
89.5, 93.2],
87.3, 86.3],
96.8, 87.9],
95.4, 98.7],
86.3, 90.8],
91.5, 93.6],
85.5, 80.9],
89.1, 88.1],
87.1, 84.1],
93.1, 91.6],
87.4, 93.9],
89.2, 96.8],
94.4, 97.71,
88.3, 91. 1,
98.1, 101.5],
83.6, 83.5],
94.8, 94.41])

We see that the stack function generates a list of lists, with each sub list now a pair of values
for each observation in our data set.

Bootstrap resampling selects 50 pairs with replacement and calculates a r value at each
resample.

1 r vals boot = [np.corrcoef(data[np.random.randint(data.shape[0], size=50), :], 1
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Placing all the bootstrapped r values in order, we can calculate which index in this order will
represents the 2.5% percentile and which the 97.5% percentle (for a 95% confidence level).

12.5/ 100 * 2000 # Lower level index for sample size

50.0

197.5 / 100 * 2000 # Upper level index for sample size

1950.0

Our original Pearson correlation is shown again below.

0.7161222698456384
The lower bound of the 95% confidence interval is the value with index 49.

1 lower = np.sort(r_vals boot)[49]
2 lower

0.5842219362078087
The upper bound of the 95% confidence interval is the value with index 1949.

1 upper = np.sort(r_vals boot)[1949]
2 upper

0.8239454457847083

We can now state a Pearson correlation coefficient of 0.72 (95% confidence interval 0.58 -
0.82, p value < 0.01) (with rounding). We can visualise the distribution and bounds below,
noting a left-tailed (negative skewness) distribution.

1 go.Figure(

2 data=go.Histogram(

3 x=r vals_boot,

4 name="'Bootstrapped r values',

5 xbins=dict( # bins used for histogram
6 start=-1.0,

7 end=1.0,

8 size=0.01

9 )

10 )

11 ).add_trace(
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12 go.Scatter(

13 x=[lower, lower],

14 y=[0, 707,

15 name="'Lower bound'

16 )

17 ).add trace(

18 go.Scatter(

19 X=[upper, upper],

20 y=[0, 707,

21 name="'Upper bound'

22 )

23 ).add _trace(go.Scatter(

24 x=[r, r],

25 y=[0, 707,

26 name='0Original r value'

27 )).update layout(

28 title='Distribution of bootstrapped r values',
29 xaxis={'title':'Correlation coefficient'},
30 yaxis={'title': 'Frequency'}

31)

Distribution of bootstrapped r values
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A paper on these techniques can be read at this URL:
https://www.ijser.org/researchpaper/Correlation-Analysis-The-Bootstrap-Approach.pdf
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v THE F DISTRIBURION

The distribution of r values was not symmetric. In this section, we take a look at the F
distribition. It is only added here to inform the work in the rest of this notebook.

The Fisher-Snedecor or F distribution is a sampling distribution of the F ratio (F statistic), shown
in (4). As a ratio, the F statistic has a numerator and a denominator. The statistic has two
parameters, d| and d,, reflecting the notion of degrees of freedom in the numerator and the
denominator.

dl+d2

| di\7T ¢ di \~
f(x;dy,dy) = m<—1> 2 x71_1<1 + —1x> 2 4)

Below, we create a function representing the probability density function of the F distribution.

1l def £ pdf(x, dl =1, d2 = 19):
2 return (1 / special.beta(dl/2, d2/2)) * ((dl/d2)**(d1l/2)) * (x**(dl/2 - 1))

Here d1 and d2 represent the two parameters. Note the use of the beta function from the
special module in the scipy package. This is the mathematical beta function. Below, we generate
plot of the F distribution given a few example parameter values.

1 go.Figure(

2 data=go.Scatter(
3 x=np.arange(0.01, 2, 0.005),
4 y=f pdf(np.arange(0.01, 2, 0.005), 10, 1),
5 mode="'lines',
6 name='Dl = 10, D2 = 1'
7 )

8 ).add trace(

9 go.Scatter(
10 x=np.arange(0.01, 2, 0.005),
11 y=f pdf(np.arange(0.01, 2, 0.005), 5, 2),
12 mode="'lines',
13 name='D1l = 5, D2 = 2'
14 )
15 ).add trace(
16 go.Scatter(
17 x=np.arange(0.01, 2, 0.005),
18 y=f pdf(np.arange(0.01, 2, 0.005), 29, 18),
19 mode='lines',
20 name='D1l = 29, D2 = 18'
21 )

22 ).update layout(title='f distributions for example parameters')
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f distributions for example parameters
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Given a specific F statistic and parameters values, the p value represent the area under the cruve
from the statistic value towards positive infinity. Below, we see an F statistic value of 3.5.

The add_vline function was introduced in version 4.12 of Plotly. At the time of writing this
notebook, Google Colab installed version 4.1.4. If you are running a version 4.12 or later, you can
add a vertical line using the code below.

go.Figure( data=go.Scatter( x=np.arange(0.01, 4, 0.005),
y=f pdf(np.arange(0.01, 4, 0.005), 1, 10), mode='lines', name='Dl = 1, D2

10" ) ).add vline( x=3.5 ).update layout(title='F statistic of 3.5")

Instead here, we add another trace.

1 go.Figure(

2 data=go.Scatter(
3 x=np.arange(0.01, 4, 0.005),
4 y=f pdf(np.arange(0.01, 4, 0.005), 1, 10),
5 mode='lines',
6 name='D1 = 1, D2 = 10'
7 )

8 ).add trace(

9 go.Scatter(
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10 x=[3.5, 3.51,

11 y=[0, 4],

12 mode="'lines',

13 name='F statistic'
14 )

15 ).update layout(title='F statistic of 3.5")

F statistic of 3.5

3.5

2.5

1.5

0.5
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Given parameters values of 1 and 10, we note the area under the curve. The cumulative
distribution function, f.cdf from the stats module in the scipy package is used to calculate this
p value.

11 - stats.f.cdf(3.5, 1, 10)

0.0908840968343213

~ SIMPLE LINEAR REGRESSION

While the correlation coefficient gives us an understanding of the association between two
numerical variables, we can do more. Linear regression allows us to build a model of our data. In
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essence, this model can predict the value of a dependent variable, given an independent

Since linear regression uses the F distribution, we can also use the method that we learn here to
estimate a p value for the difference in means between two groups, instead of using a t test.

To explore linear models and t tests, we need some data. We use the same data as in our
discussion on correlation.

A scatter plot (shown below and repeated from above) shows positive correlation. As the values
in the independent variable increase, so do the values in the dependent variable.

1 go.Figure(data=go.Scatter (x=independent, y=dependent,

2 mode="markers',

3 marker=dict(size=12))).update layout(title='Data',
4 yaxis=dict(title='Dependent variable'),

5 xaxis=dict(title='Independent variable'))

Data
105
100 ‘.'.
9 L)
e 95
> ® ® o9 o o
E 90 P ° ®
g o ® o
@ O ® o)
Q 85
o) ® o
e ‘ [ )
80 o ® o ®
)
75
)
80 85 90

Independent variable

We can assign these values to a pandas DataFrame object. Below, we also manually add a
categorical variable with sample space elements ¢ and . These represent two classes by
which we can group the data for the comparison of means later in this notebook.
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1 df = DataFrame({'Independent':independent, 'Dependent’':dependent, 'Group':np.rej
2 df[:5]

Independent Dependent Group

0 81.5 73.0 C
1 95.6 86.6 C
2 88.8 90.7 C
3 94.5 105.7 C
4 99.6 100.9 C

To allow us to use packages such as statsmodels to generate models such as linear
regression for us, we need to put our data into a format that this package can use. One way is to
use design matrices. The dmatrices function in the patsy package allows us to generate these
design matrices for our analysis.

Our data is a pandas DataFrame object. The dmatrices function uses a formula to generate the
design matrices, which we assign to the variables y and x. The formula is in the form of a
string.

1 # Formula for dependent variable given the independent variable
2y, X = dmatrices( 'Dependent ~ Independent', data = df)

We can take a look at both computer variables y and x. The former is simply the dependent
variable. The latter is a matrix (two columns). The second column is our independent variable.
The first column contains all 1's.

ly

DesignMatrix with shape (50, 1)
Dependent
73.0
86.6
90.7
105.7
100.9
88.2
99.6
82.6
85.9
91.3
92.9
94.6
80.4
83.8
85.3
104.2
82.5
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79.5
98.1
89.0
90.1
94.6
78.6
85.7
96.7
76.8
98.0
93.6
93.9
96.6
[20 rows omitted]
Terms:
'Dependent' (column 0)
(to view full data, use np.asarray(this obj))

1X

DesignMatrix with shape (50, 2)
Intercept Independent

1 81.
95.
88.
94.
99.
90.
90.
81.
85.
90.
93.
96.
87.
81.
85.
98.
84.
89.
98.
80.
92.
99.
84.
91.
98.
82.
90.
95.
93.
89.

PR R RPRRRRRRPEPRRBERRERRRBERPRRERREPERRRPRRERRRERR @R
B R OUTNINOONODOU OO WNO®WOKREKOORKSOO®OU OO U

[20 rows omitted]
Terms:
'Intercept' (column 0)
'Independent' (column 1)
(to view full data, use np.asarray(this obj))

Now that we have our data, we can start looking at simple linear regression.
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Before we use the design matrices and simplify our task using Python, we need to understand
the concept of a linear model.

From the scatter plot above, we see that we have two numerical variables for our 50
observations. Given an independent variable value, we have a dependent variable value for that
observation. The aim of a linear model is to predict a value for the dependent variable given the
value of the independent variable. It may be that the dependent variable is expensive to capture.
In such a scenario, a model is used to predict its values.

By nature, model predictions will not be accurate. For one, measurements are not always
accurate. More importantly, the depedent variable probably depends on many other indepedent
variables that we are not considering in the model. The predicted value (value predicted by the
model) and the actual value are different given a specific independent variable value. This
difference is known as the error or the residual.

For linear regression (of a univariable model), we aim to find coefficients f and f; such that for
our data, we generate the values below in (5).

73.0 1 81.5 (e
86.6 _g 1 y 95.6 e 5)
9007| " "°|1 ' 888 e3

Our first observation had an independent variable value of 81.5 and a dependent variable values
of 73.0. The model states that if we have values for iy and f; we would have the linear
equation 73.0 =~ fy + 81.5f;. We see the approximate symbol, =, since, as mentioned, the
values do not all lie on a straight line. For equatily, we would need to add each individual residual
toget 73.0 = fo + 81.504; + e;.

A linear model is indeed a straight line (for a single independent variable). The equation

73.0 = fo + 81.5p; should look very familiar to one from school algebra y = mx + c. Here y
is the dependent variable, m is the slope or f31, x is the independent variable, and c is the y
intercept (when x = 0) or f.

Below is a representation of a model (not our actual data). We see an image with red markers
indicating the value for each subject, with the independent variable value on the x or horizontal
axis and the dependent variable value on the y axis or vertical axis. The model is indicated by the
blue line. For a given independent variable value, we see the actual value (y coordinate of the
red dot) and the predicted value (y coordinate of the blue dot).
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Prediction vs actual value

Actual dependent Model @
variable value

Dependent variable

. Independent variable
value

Independent variable

The next image shows the errors or residuals. The difference between the actual dependent
variable value and the predicted value.
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Residuals

Model
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The generation of the model follows processes that aim to minimize the difference between the
predictions and the actual values, by considering the sum of the square of the residuals.
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LEAST SQUARES

Model

Dependent variable

Independent variable

The residuals are squared to generate positive values. Some of the residuals are negative and
some are positive. Simply adding them will result ina 0.

There are various methods of determining the parameters (the intercept fy and the slope ) of
this model (blue line). One method is ordinary least squares. It involves the use of linear
algebra. The matrix equation is shown below in (6). Here A is our design matrix x from above
and y is the vector of dependent variables. The T refers to the transpose of a matrix and the —1
refers to the inverse of a matrix.

p=(ATA) ATy (6)

We can also use calculus for the method of gradient descent to find values for the parameters
Po and f that minimize a cost function.

These techniques are covered in more advanced courses.

Here, though, we evaluate how well this model achieved its aim of minimizing the errors, by way
of calculating the coefficient of determination, shown in (7) below, where s? is the variance.
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2 2
R2 — S mean model residuals — S~ best model residuals (7)

2
S mean model residuals

We see from (7) that we require two models, a mean model and a best model. We will create
these in the next section.

Note that equation (7) expresses the fraction of the variance in the dependent variable explained
by the model. Below, we take a look at the mean model and the best fit model.

v MODEL BASED ON THE MEAN OF THE DEPENDENT VARIABLE

The simplest prediction of the dependent variable is its mean. Given any independent variable
value, we simply use the mean of the dependent variable as predicted value.

1 # Mean of the dependent variable
2 mean dependent = np.mean(dependent)
3 mean_ dependent

90.456
The model is represented as a line on the scatter plot below.

1 go.Figure(

2 data=(

3 go.Scatter(

4 x=df.Independent,

5 y=df .Dependent,

6 mode="'markers',

7 name='data',

8 marker=dict(size=12)

9 )

10 )

11 ).add_trace(

12 go.Scatter(

13 x=[80, 100],

14 y=[mean_ dependent, mean dependent],
15 mode='lines',

16 name='mean model'

17 )

18 ).update layout(

19 title='Mean model',
20 xaxis=dict(title='Independent variabe'),
21 yaxis=dict(title='Dependent variable')
22 ).show()
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Mean model
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Independent variabe

The first independent variable value on the scatter plot with the mean model above is 80.5. By
the mean model, we predict a dependent variable value of 90.456 (the mean of the dependent
variable). The residual (difference between the dependent variable and the predicted variable is)
89 — 90.5 = —1.5. We can calculate the residuals for all the observations.

As mentioned above, some will be negative residuals and some will be positive. Adding them
will, by how we calculate the mean, be 0. To solve this problem, we square each residual
(squaring any value returns a positive value), giving us the variance in the dependent variable.

Below, we assign the variable to the computer variable var mean model .

1 var mean model = np.var(dependent)
2 var_mean_model

50.56366400000001

Now for the best fit model. As mentioned, simple linear regression uses ordinary least squares
or gradient descent to calculate a model that minimizes the residuals. Below, we use the
stasmodels package's ordinary least squares method.
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v statsmodels ORDINARY LEAST SQUARES

The oLs function of the statsmodels package calculates the best fit model. We pass the two
design matrices from above and then call the fit method.

1 linear model = sm.OLS(y, X).fit()

We use the summary2 function to look at the model.

1 linear model.summary2 ()

Model: OLS Adj. R-squared: 0.503
Dependent Variable: Dependent AlC: 306.0983
Date: 2021-07-16 12:04 BIC: 309.9223
No. Observations: 50 Log-Likelihood: -151.05
Df Model: 1 F-statistic: 50.53

Df Residuals: 48 Prob (F-statistic): 5.02e-09
R-squared: 0.513 Scale: 25.659

Coef. Std.Err. t P>ltl  [0.025 0.975]
Intercept 1.7253 12.5032 0.1380 0.8908 -23.4140 26.8646
Independent 0.9843 0.1385 7.1083 0.0000 0.7059 1.2628

Omnibus: 0.158 Durbin-Watson: 1.583
Prob(Omnibus): 0.924 Jarque-Bera (JB): 0.365
Skew: 0.011 Prob(JB): 0.833
Kurtosis: 2.582 Condition No.: 1576

There is a lot of information here. In the middle of the summary, we see a table. The first column
shows the coefficients of the model. The y intercept (when x = 0), which is the fy from before.
The other is the slope of the best fit model, which is the | from before. We add the line to the
scatter plot of the data below.

1 # Gerating x and y values for the line
2 x vals = np.arange(80, 100, 0.1)
3y vals = 1.7253 + 0.9843 * x vals

4

5 go.Figure(data=go.Scatter(x=independent, y=dependent,

6 mode="'markers',

7 name='Data’',

8 marker=dict(size=12))).update layout(title='Best fit model',
9 yaxis=dict(title='Dependent variable'),

10 xaxis=dict(title='Independent variable')).add trace(go.Scatter(
11 x=xX _vals, y=y_ vals,

12 name='Best model',

13 mode="'lines'

14 ))
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Best fit model
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Independent variable

We also note the R? value, the F statistic, and the p value for the F statistic. We can understand
more about them, by doing our own calculations. We start by looking at the residuals, an
attribute of our model.

1 # Residuals of best model
2 linear model.resid

array([-8.94929966, -9.22854923, 1.56498957, 10.9542291 , 1.134075 ,
-2.90369831, 9.28377684, 0.74913474, 0.11175897, 0.98377684,
-0.95986135, -1.7207212 , -7.5537977 , 2.04756913, -0.88197861,

5.81215652, -2.20546269, -9.83187922, -0.68158106, 8.03504428,
-2.18491104, -4.57531863, -6.40076588, -5.6005671 , -1.68784348,
-6.33051239, 7.19160487, -1.63794287, 0.23700744, 6.8743832 ,

7.09140609, -1.41935437, 1.34307109, 3.37594881, -1.35849452,
-9.10976196, 3.06831956, 4.12584942, 1.80726093, -4.98667542,
-1.33031361, -3.36162573, -1.76768938, 6.14307109, 7.27125199,

3.0526635 , 2.35716154, 3.21059091, -0.51642193, -0.64107408])

As an aside, given the design matrix of the independent variable, we can calculate the predicted
values.

1 # Model predictions given the data
2 linear model.predict(X)
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array([81.94929966, 95.82854923, 89.13501043, 94.7457709 , 99.765925 ,
91.10369831, 90.31622316, 81.85086526, 85.78824103, 90.31622316,
93.85986135, 96.3207212 , 87.9537977 , 81.75243087, 86.18197861,
98.38784348, 84.70546269, 89.33187922, 98.78158106, 80.96495572,
92.28491104, 99.17531863, 85.00076588, 91.3005671 , 98.38784348,
83.13051239, 90.80839513, 95.23794287, 93.66299256, 89.7256168 ,
84.50859391, 90.11935437, 87.75692891, 89.82405119, 87.65849452,
97.00976196, 95.63168044, 86.67415058, 91.79273907, 85.88667542,
89.43031361, 87.46162573, 93.36768938, 87.75692891, 89.52874801,
94.6473365 , 88.64283846, 98.28940909, 84.01642193, 95.041074087])

As with the mean model, we also calculate the variance in the residuals. It is assigned to the
computer variable var best model below.

1 # Sum of squared errors for the model
2 var_best model = np.var(linear model.resid)
3 var_best model

24.633044299379907
We use equation (7) to recalculate the R? value.

1 # R squared
2 (var_mean _model - var_ best model) / var mean model

0.5128311053688692

This value will always be on the interval [0, 1]. Our model has a coefficient determination of
0.513. We interpret this result by noting that our model (the independent variable) explains
51.3% of the variance in the dependent variable.

v p VALUE OF THE MODEL BASED ON THE F STATISTIC

The F distribution allows us to calculate a p value for our model. The equation is shown in (8).
Here, Ppest model @19 Prean model ar€ the number of parameters in the best (fitted) and in the
mean model, and # is the number of observations. These calculations (as they appear in the
numerator and denominator of equation (8)) are termed the degrees of freedom.

2 . 2 .
S~ mean model residuals —S "~ best model residuals

F _ Pbest model "Pmean model (8)

2 .
5” mean model residuals

N—=Ppest model

1 p best
2 p mean

2 # Number of parameters in the fitted model
1 # Number of parameters in the model based on the mean
3 n = len(independent) # Sample size
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1 F = ((var_mean model - var best model) / (p_best - p mean)) / ((var_best model)
2 F

50.528458054252646

Below, we calculate a p value from the cumulative distribution function, cdf, for the F
distribution given the two degrees of freedom values in (8).

1 # p value for the F statistic given the numerator and denominator degrees of fre
21 - stats.f.cdf(F, p best - p mean, n - p best)

5.017339543833543e-09

v DIAGNOSTICS

There are underlying assumptions that must be met for the use of linear regression in this way.
The model that we have built is linear and it might be that the relationship between the variables
is not linear. This might become evident when plotting the residuals for each independent
variable.

1 residuals = linear model.resid # The residuals

1 go.Figure(data=go.Scatter (x=independent, y=residuals,

2 mode="'markers',

3 name='Residuals',

4 marker=dict(size=12))).update layout(title='Residual plot',

5 yaxis=dict(title='Residuals'),

6 xaxis=dict(title='Independent variable')).add trace(go.Scatter(
7 X=[np.min(independent), np.max(independent)],

8 y=[0, O],

9 name='Zero line',

10 mode="'lines'

11 ))
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Residual plot
10 ¢
o
o
o o
o L)
° o
® O
E ° o o o, ¢
a0 = o .

We note a fairly even spread (above and below the zero line) of the residuals across the values
for the independent variable. There does not seem to be a pattern in the spread, i.e. for some
values of the independent variable most of the residuals are on one side of the zero line.

[
If there is no pattern or indication of non-linearity, we should see no correlation between the
independent variable and the residuals.

1 stats.pearsonr(

2 independent,
3 residuals
4)

(-4.56743478446159e-16, 0.9999999999999972)

The correlation coefficient is 0, indicating no correlation.

The residuals might also show a sideways pyramidal shape (being much higer and lower at one
end of the independent variable scale and very close to the zero line as we move to the opposite
side of the independent variable. This may indicate heteroscedasticity.

There is a relationship between the standard deviation of the residuals, 5.5, and the standard
deviation of the dependent variable, sy , shown in (9).

s = /1= 72 X s ©)

v MULTIVARIABLE LINEAR REGRESSION
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We can add more independent variables to a linear regression model. A linear regression model

with more than one independent variable is known as a multivariable linear regression model.
Below we create two variables and a dependent variable and generate a pandas dataframe

nhiart fram tha raciilte

1 # Generating numpy arrays with random values

2 varl = np.random.randint(low=100, high=200, size=100) / 10
3 var2 = np.random.randn(100)

4 dependent = varl + var2 + (np.random.randn(100) * 10)
5

6 # Add the arrays to a DataFrame object

7 df = DataFrame(

8 {

9 'Variablel':varl,

10 'Variable2':var2,

11 'Dependent ' :dependent

12 }

13 )

14 df[:10]

Variablel Variable2

0 14.5
1 10.2
2 111
3 11.3
4 16.5
5 19.8
6 16.9
7 13.8
8 19.5
9 19.7

Below we view a scatter plot consisting of the two independent variables on the x and y axes
and then the dependent variable as a continuous color.

1 go.Figure(

H O W 0 o6 U b W IN

=

)
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-1.395211

0.463460

1.142066

-0.229825

0.803057

0.152883

0.494593

-0.269884

-1.477107

-0.726149

data=go.Scatter(
x=df .Variablel,
y=df.vVariable2,
mode="'markers',

marker=dict(

size=16,

showscale=True

Dependent
29.711308
18.059506

8.162823
13.005562
40.325141
19.911687
23.695777
14.653412
18.575422

19.166545

color=df.Dependent,
colorscale='Viridis',
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12 )
13 ).update layout(title='Scatter plot of independent variables and heatmap as deps

Scatter plot of independent variables and heatmap as dependent vari:
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We can also create a scatter plot of each pair of the three numerical variables.

1 px.scatter matrix(

2 df,
3 title='Scatter plot matrix'
4)
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Scatter plot matrix
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We once again generate design matrices using the dmatrices function in the patsy package.

> -2 - . =z .-
1y, X = dmatrices(
2 'Dependent ~ Variablel + Variable2',
3 data = df
4)
=3 Ta 'R _eg 0P NI Ty " s’ T TR, T

The matrix with predictor variables is shown below.

v - P — 19 —

1 X[:5]
array([[ 1. , 14.5 , —-1.39521142],
[ 1. , 10.2 , 0.46345976],
[ 1. , 11.1 , 1.14206644],
[ 1. , 11.3 , —0.22982484],
[ 1. , 16.5 , 0.80305663]11])

The linear model is created just as before, using the ors function in the statsmodels package.
The model is assigned to the multi 1lin model computer variable.

1 multi lin model = sm.OLS(y, X).fit()

1 multi lin model.summary2()
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Model: OLS Adj. R-squared: 0.072
Dependent Variable: Dependent AlC: 738.9390
Date: 2021-07-16 12:04 BIC: 746.7545
No. Observations: 100 Log-Likelihood: -366.47

The multi_lin model object has a resid attribute (as before). We express the variance in the
mean model (mean of the dependent variable) and in the residuals.

Coef. Std.Err. t P>Itl 10.025 0.9751

1 var mean model = np.var(df.Dependent)
2 var_best model = np.var(multi lin model.resid)

valiavit<4 £.9 1490 V.0010 £.0019 V.UVUOO V.7/040 “4.204V

We can now use equation (7) the replicate the R? value.

Qleaw- -N NRAR Prnh/ IR\- N a4

1 (var_mean model - var best model) / var mean model

0.09103153279036133

We can also replicate the values for the F statistic and the p value. Our best model has 3
parameters and the mean model still only 1.

1 p best 3
2 p mean 1
3 n = len(df.Dependent)

Below, we calculate the F statistic and the pvalue.
1 F = ((var_mean model - var best model) / (p_best - p mean)) / ((var_best model)
2 F

4.857186469719714

11 - stats.f.cdf(F, p best - p mean, n - p best)

0.009763772419758898

v REVISITING THE t TEST

Instead of using Student's t test, we can use the F distribution when comparing two means. We
start by generating two python list objects that contain our variable of interest. This represents
the same statistical variable for two groups. Both groups of values are from a normal
distribution, with a slight difference in mean and standard deviation.

1 np.random.seed(7) # For reproducible results

2
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3 groupl = np.random.normal(100, 5, 100)
4 groupII = np.random.normal(103, 8, 110)
5 groupAll = np.append(groupI, grouplI)

A box plot of the distribution of the variable for each group visualizes the difference.

1 go.Figure(

2 data=go.Box(

3 y=groupI,

4 name='Group I'

5 )

6 ).add trace(

7 go.Box(

8 y=grouplTI,

9 name='GroupII'

10 )

11 ).update_layout(

12 title='Distribution of variable in each group',
13 xaxis=dict(title='Group'),

14 yaxis=dict(title='Variable value')
15 )

Distribution of variable in each group
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v STUDENT'S t TEST
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The simplest way to compare the means is to use Student's t test, ttest_ind, making use of
the t distribution and defined degrees of freedom.

1 stats.ttest ind(groupI, groupII)

Ttest indResult(statistic=-2.4776956543506845, pvalue=0.014019905630597691)

Below instead, we use the F distribution to recalculate the p value.

v CALCULATING THE F STATISTIC AND p VALUE

We follow the same principles as we did with the simple linear regression model. Here, though,
we only consider the sum of squared residuals (and not the variance and there are, or may be, a
different number of samples in each group). Our simplest model would represent the sum of
squared errors with respect to the mean of all the 1ndependent variable values.

1 # Sum of squared errors with the mean of all the values as model
2 ss_mean = np.sum((groupAll - np.mean(groupAll))**2)
3 ss_mean

9340.958577034542
We do the same for each of the two groups. This represents our best fit model.
1l ss I = np.sum((groupl - np.mean(groupl))**2)
2ss I
2594.5756569559535
1 ss IT = np.sum((groupIIl - np.mean(groupll))**2)
2 ss_II

6478.594592260031
Our best fit model sums the two sum of squared errors.

1l ss best = ss I + ss_1II
2 ss_best

9073.170249215986

The number of parameters in the simple (mean) model is just 1. There are 2 means in the best
fit model.
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1 # Degrees of freedom for the two models
2 p best = 2

3 p mean =1

4 n = len(groupAll)

We now calculate the F statistic using equation (10).

SSmean model — S Sbest model

F _ Pbest model “Pmean model

S Sbest model
N—Ppest model

1F = ((ss_mean - ss best) / (p_best - p mean)) / ((ss_best) / (n - p best))

2 F

6.13897575558805

(10)

It is left to use the cumulative distribution function for the F distribution given the degrees of

freedom in the numerator and the denominator.

11 - stats.f.cdf(F, p best - p mean, n - p best)

0.014019905630599294

This is the same value as calculated using Student's t test.

v ANALYSIS OF VARIANCE

We can also compare more than two groups using analysis of variance (ANOVA). Below, we

create a dataframe object with a categorical variable consisting of three sample space elements

(generating our three groups) and a numerical variable.

1 np.random.seed(123)
2 df = DataFrame(

3 {'Group' :np.random.choice(['A', 'B', 'C'],

4 'Variable':np.random.randn(300)})

1 df[:10] # First 10 observations
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Group Variable

0 C 0.831080
1 B  0.022368
2 C -0.069009
3 C -1.933373
4 A -0.592466
5 C -0.944294
6 C 1.301994

Below, we extract three numpy arrays for the numerical variable, one for each of the sample
space elements of the categorical variable.

1 groupA = df[df.Group == 'A'].Variable.to numpy()
2 groupB = df[df.Group == 'B'].Variable.to numpy()
3 groupC = df[df.Group == 'C'].Variable.to numpy()

We view the summary statistics of the three groups with respect to the numerical variable.

1 df .groupby('Group')[ 'Variable'].describe()

count mean std min 25% 50% 75% max

Group
A 93.0 -0.008760 1.184050 -3.411796 -0.708684 -0.009658 0.677320 2.986487
B 103.0 0.002660 1.033858 -2.339763 -0.767179 0.022368 0.793084 2.382312

C 104.0 0.010071 0.977205 -2.015960 -0.674137 0.135012 0.607356 2.932145

A box plot shows the differences in the distribution of the numerical variable for the three
groups.

1 px.box(

2 df,

3 x="'Group',

4 y='Variable',

5 title='Variable by group')
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Variable by group
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The £ oneway function in the scipy stats package can calculate the p for us.

1 stats.f oneway(

2 groupA,
3 groupB,
4 groupC
5)

F_onewayResult(statistic=0.007751139414394867, pvalue=0.9922790239231731)

We fail to reject the null hypothesis (there are no difference in the means of the variable for the
three groups.) We can recalculate the F statistic and the p value as before.

v CALCULATING THE F STATISTIC AND p VALUE

The sum of squared errors for the mean model is calculated first.

1 ss mean = np.sum((df.Variable - np.mean(df.Variable))**2)

2 ss_mean

336.3808045849813

The sum of squared errors around the individual means are calculated next.
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1l ss_a = np.sum((groupA - np.mean(groupl))**2)
2 ss b
3 ss ¢

np.sum( (groupB - np.mean(groupB))**2)
np.sum( (groupC - np.mean(groupC))**2)

Our best model adds these errors.

1l ss best = ss a + ss b + ss ¢
2 ss_best

336.3632476932187

The mean model has a single parameter and the best model has 3 (means).

1 p mean 1
2 p best 3
3 n = len(df.Variable)

Below, we complete the recalculation of the F statistic and the p value.
1F = ((ss_mean - ss_best) / (p_best - p mean)) / ((ss_best) / (n - p best))
2 F

0.007751139414403642

11 - stats.f.cdf(F, p best - p mean, n - p best)

0.9922790239231496

v CONCLUSION

Understanding mean models, variance, the best fitted model, residuals, and model parameter
numbers, we can use the F distribution to great effect.
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