16/07/2021 10Uncertainty.ipynb - Colaboratory

+ UNCERTAINTY

by Dr Juan H Klopper

e Research Fellow
e School for Data Science and Computational Thinking
e Stellenbosch University

SCHOOL FOR
DATA SCIENCE &

COMPUTATIONAL
THINKING

v INTRODUCTION

One the most important aspects of Data Science is the ability to express uncertainty in our data
and in our results.

The genration of random variables is not precise. Take a simple example such as height
measurement. We only measure up to a set precision. If the measurement is done by hand, we
cannot guarantee accuracy.

We also only work with sample of a population. Most often, there is a large difference in the
population size and the sample size. We therefor don't approach the population parameters with
our test statisics. There is uncertainty in our results.

In this notebook we learning to understand uncertainty and how to calculate and express the
uncertainty in our results. This will be done by investigating the method of bootstrapping. Later
we will learn how to calculate confidence intervals.

v PACKAGES USED IN THIS NOTEBOOK

We see all the familiar, industry standard package imported below.

1 imnar+ niimnv aa nn # Nimmerical analvaia

https://colab.research.google.com/drive/ lhBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true 1/13

16/07/2021 10Uncertainty.ipynb - Colaboratory

4 Sanpo i C sl) WA B3] 7 AVMALINC A il I)

2 from scipy import stats # Statistical module
3 from pandas import DataFrame # Importing only the DataFrame function from pandas

1 # Data visualisation

2 import plotly.express as px

3 import plotly.graph objects as go

4 import plotly.figure factory as ff

5 import plotly.io as pio

1 # Setting a different plotting theme
2 pio.templates.default = 'ggplot2'

v BOOTSTRAPPING

Bootstrapping is the technique of multiple resampling for our given sample. New samples are
generated by drawning, at random, from the original sample set, with replacement.

In the code below, we generate random values for a variable in a population and then take a
random sample from the population. Since we designed the population, we know the
parameters of the variable. The variable is named population and the values are taken from a
normal distribution with a mean of 100 and a standard deviation of 10.

1 np.random.seed(10)
2 population = stats.norm.rvs(

3 loc=100, # Mean 100

4 scale = 10, # Standard deviation 10
5 size=20000 # Population size

6)

We can calculate the exact mean and standard deviation of the variable in the population (both
are parameters).

1 np.mean(population) # Mean parameter

99.99365915541331

1 np.std(population) # Standard deviation parameter

9.983005340618837

For our study, we randomly select 50 individuals from the population. Note the use of the
replace argument and its value False. We do not want to select the same subject twice.

1T nn vanAAm canld/l1\ # DanvrAadii~rihla vracnl+te

https://colab.research.google.com/drive/ThBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true 2/13

16/07/2021 10Uncertainty.ipynb - Colaboratory

4 UM el ULIUVILe DTTU | L) 77 LNTPLUUULLIULT LTOouLLD

2 sample = np.random.choice(

3 population,

4 size=50,

5 replace=False # Fifty seperate individuals
6)

We calculate the mean and standard deviation of the sample (two statistics).

1 np.mean(sample) # Mean statistic

97.80136620289275

1 np.std(sample) # Standard deviation parameter

10.840027370000964

The statistics are not the same as the parameters.

The process of boostrapping resamples multiple times from the sample and records the
statistic each time. This gives us a distribution of the statistic. Each resample must have the
same sample size as the original sample. This is done with replacement, else we would simply
return the same sample each time. Replacement then simply refers to the fact that we return a
subject for possible reselection every time. Since we want the same sample size in each new
bootstrapped sample, we will have some subjects occur more than once in each new sample.

We use list comprehesnion below to build a list of 1000 resampled means. Note below that we
set the replace argumentto True and the sample size in the choice function is the same as
the original sample.

1 means = [np.mean(np.random.choice(sample, 50, replace=True)) for i in range(100¢(

The create displot function from the figure_factory module of the plotly package provides us
with a histogram and a normal curve based on the data. We note that the plot includes the
population mean.

1 ff.create distplot(
[means],
['Resampled means'],
curve type='normal'

) -.update layout(
title='Sampling distribution of means',
xaxis=dict(title='Bootstrapped means'),
yaxis=dict({'title':'Density'})

OW 0 4 &6 U b W N

https://colab.research.google.com/drive/ThBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true 3/13

16/07/2021

Density

10Uncertainty.ipynb - Colaboratory

Sampling distribution of means

0.25-

0.2-

0.15-

0.1-

0.05-

1
94 96 98 100

Bootstrapped means

Now we can use percentiles to consider the middle 95% of values. We ask what value would
represent a percentile of 2.5% and what value would represent a percentile of 97.5%. We have
to be careful when working with percentiles, though. We have an infinite number of percentile
values (if we use decimal values as we do here). We do not have an inifinite number of means.
There can also be ties (means with the same value). For this reason, we view the percentiles as
the following steps. As as example, we use a percentile of 2.5% and a sample size of n.

1. Sort the collection in ascending order
2. Calculate k, which is 2.5% of n (shown in (1) below)
3. If k is a whole number then the k-th value in the ordered collection represents the 2.5%

percentile.

4. Else, round k up to the nearest whole number and select that value from the ordered

collection.

25
= — 1
k= 700" &

We are interested in the values representing the 2.5% and the 97.5% percentiles. These are
calculated below and assigned to appropriately named computer variables.

https://colab.research.google.com/drive/ lhBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true

4/13

16/07/2021 10Uncertainty.ipynb - Colaboratory

1k 25 =2.5/ 100 * 1000
2k 25

25.0

1k 97 5 = 97.5 / 100 * 1000
2k 975

975.0

Since Python is 0-indexed, we want the 24-th and 974-th values in the ordered array of
resampled means.

1 sorted means = np.sort(means)

1 sorted means[24]

94.42864993563255

1 sorted means[974]

100.91367042455282

Below, we create another distribution plot. It indicates the percentile values and the population
mean.

1 ff.create distplot(

2 [means],

3 ['Resampled means'],

4 curve type='normal'

5).add _trace(

6 go.Scatter(

7 x=[sorted means[24], sorted means[24]],
8 y=[0, 0.2],

9 name='2.5%"',

10 mode="'lines',

11 marker=dict({'color':'orange'})

12)

13).add trace(

14 go.Scatter(

15 x=[sorted means[974], sorted means[974]],
16 y=[0, 0.2],

17 name='97.5%"',

18 mode="'lines',

19 marker=dict({'color':'orange'})

20)

21).add trace(

22 go.Scatter(

23 x=[np.mean(population), np.mean(population)],
2N xr—T N n 21

https://colab.research.google.com/drive/ThBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true 5/13

16/07/2021 10Uncertainty.ipynb - Colaboratory

L Y~ LYy Vecs]y
25 name="'Population mean',
26 mode="'lines',
27 marker=dict({'color':'green'})
28)
29).update_ layout(
30 title='Sampling distribution of means',
31 xaxis=dict(title='Bootstrapped means'),
32 yaxis=dict({'title':'Density'})
33)
Sampling distribution of means
0.25-
0.2-
> 0.15-
()
c
]
&) 0.1-
0.05-
O_

1
94 96 98 100

Bootstrapped means

We note that the area between the orange lines represent 95% of the area under the curve. We
also note that the population parameters falls within these bounds. We could have chosen a
different area under the curve. At 80%, the population mean would be outside of the bounds. For
80% we have 10% on either side.

1 ff.create distplot(
[means],
['Resampled means'],
curve type='normal'
) -add_trace(
go.Scatter(
x=[sorted means[99], sorted means[99]],
y=[0, 0.2],

a nama="'1Nn2"'
https://colab.research.google.com/drive/ lhBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true 6/13

0 N o U W N

16/07/2021

7

10
11
12

13).

14
15
16
17
18
19
20

21).

22
23
24
25
26
27
28

29).

30
31
32
33)

10Uncertainty.ipynb - Colaboratory

Hawe— 1uo g
mode="'lines',
marker=dict({'color':'orange'})

)
add_trace(
go.Scatter(
x=[sorted means[899], sorted means[899]],
y=[0, 0.2],
name="'90%"',
mode="'lines',
marker=dict({'color':'orange'})
)
add_trace(
go.Scatter(
x=[np.mean(population), np.mean(population)],
y=[0, 0.2],
name='Population mean',
mode='lines',
marker=dict({'color':'red'})
)
update layout(
title='Sampling distribution of means',
xaxis=dict(title='Bootstrapped means'),
yaxis=dict({'title':'Density'})

Sampling distribution of means

0.25-

0.2-

0.15-

Density

0.1-

0.05-

|
94 96 98 100

Bootstrapped means

https://colab.research.google.com/drive/ ThBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true 713

16/07/2021 10Uncertainty.ipynb - Colaboratory
The (percentage) bounds are termed confidence levels and the actual values at those bounds
are the confidence intervals. At first then, we calculated for a 95% confidence level and returned
the 95% confidence interval values.

Below, we revisit our sample static and 95% confidence intervals.

1 np.mean(sample) # Sample mean

97.80136620289275

1 sorted means[24] # Lower bound

94.42864993563255

1 sorted means[974] # Upper bound

100.91367042455282

When expressing the uncertainty in our sample statistic we would then state: The variable mean
in the sample was 97.8 (95% confidence interval 94.4 - 100.9).

Does this mean that we are 95% confident that the population parameter is within the
confidence interval? NO. The confidence intervals state that if we were to repeat the experiment
100 times, we would find the population parameter in 95 of the repeat experiments.

v CONFIDENCE INTERVALS USING SCIPY

We have seen the use of the t distribution. It is commonly used in statistical test, especially
when we do not know the population parameters. The interval function in the stats module of
the scipy package can be used to calculate the confidence intervals given a confidence level.

We use the t.interval function below for the t distribution. The alpha argumentis the
confidence level (in percentage). The df argument is the degrees of freedom, which is the
sample size minus the number of groups (we only had a single sample group). We also need the
mean (loc argument) and the standard error of the sample (scale argument with the value
calculated by the sem function). The latter is the standard deviation divided by the square root
of the sample size.

1 stats.t.interval(
2 alpha=0.95,
3 df=len(sample)-1,

A [P i, BN

https://colab.research.google.com/drive/ThBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true 8/13

16/07/2021 10Uncertainty.ipynb - Colaboratory
a4 LOC=np.ledll(Sdiuple),

5 scale=stats.sem(sample)
6)

(94.68938755375859, 100.91334485202691)

These values are very near our bootstrapped values. As the sample size increases and the

number of repeated sampling increases, the confidence intervals will be closer to these values.

v EXAMPLE USING THE MEDIAN

We are not stuck to the mean as sample statistic. In this example, we consider the confidence
intervals for the median.

Below, we genarate random values taken from the)(2 distribution. We imagine that the array

that we create is for a continuous numerical variable in a sample. There are 200 observations in

the sample.

1 np.random.seed(12)
2 var = np.random.chisquare(df=10, size=200)

We calculate the sample median below.

1 np.median(var)

9.378925104862498

We see a median of 9.38.

Next, we visulise the data.

1 px.box(

2 y=var,

3 title='Box plot of variable values',
4 labels={'y':'Variable values'},

5 width=600

6)

https://colab.research.google.com/drive/ThBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true

9/13

16/07/2021 10Uncertainty.ipynb - Colaboratory

Box plot of variable values

25-

20-

15-

Variable values

10-

5-

Now we use bootstrap resamples to generate a distribution of medians. Here we have 10000
bootstrapped samples

1 medians = [np.median(np.random.choice(var, 200, replace=True)) for i in range(1l(

We use again to view a distribution plot of the medians. We use the kde (kernel density
estimate) value for the curve type argument, as the distribution is not normal.

1 ff.create distplot(
[medians],
['Resampled medians'],
curve_ type='kde'

) -.update layout(
title='Sampling distribution of medians',
xaxis=dict(title='Bootstrapped medians'),
yaxis=dict({'title':'Density'})

O 00 6 U1 & W N

https://colab.research.google.com/drive/ThBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true 10/13

16/07/2021

10Uncertainty.ipynb - Colaboratory

Sampling distribution of medians

1.5-

Density

0.5-

For a 95% confidence level, we still use equation (1).

2.5 / 100 * 10000

1k 25 =
97.5 / 100 * 10000

2k 97 5 =

1k 25

250.0
1k 97 5
9750.0

We need the medians sorted and to remember to use 0 indexing.

= np.sort(medians)

1 sorted medians

Now we can calculate the 95% confidence intervals.

1 # Lower bound
2 sorted medians[249] # The median that represents a 2.5% percentile

8.522691490434514

1 # Upper bound
2 sorted medians[9749] # The median that represents a 97.5% percentile

9.965635026054326

We can now plot these confidience interval values and our original median.

https://colab.research.google.com/drive/ lhBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true

11/13

16/07/2021 10Uncertainty.ipynb - Colaboratory

1 ff.create distplot(

2 [medians],

3 ['Resampled medians'],

4 curve_ type='kde'

5).add _trace(

6 go.Scatter(

7 x=[sorted medians[249], sorted medians[249]],
8 y=[0, 1.57],

9 name='2.5%"',

10 mode="'lines',

11 marker=dict({'color':'orange'})

12)

13).add trace(

14 go.Scatter(

15 x=[sorted medians[9749], sorted medians[9749]],
16 y=[0, 1.57],

17 name='97.5%"',

18 mode="'lines',

19 marker=dict({'color':'orange'})

20)

21).add trace(

22 go.Scatter(

23 x=[np.median(var), np.median(var)],
24 y=[0, 1.5],

25 name='0Original sample median%',

26 mode="'lines',
27 marker=dict({'color':'green'})

28)

29).update layout(

30 title='Sampling distribution of medians',
31 xaxis=dict(title='Bootstrapped medians'),
32 yaxis=dict({'title':'Density'})

33)

https://colab.research.google.com/drive/ThBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true 12/13

16/07/2021 10Uncertainty.ipynb - Colaboratory

Sampling distribution of medians

. N

Since the distribution of medians is not normal, we will not have a symmetric difference
between the bounds and the median as the plot above shows.

c / __/l \
Remember that we do not know the population median and therefor we do not know if our result
is the 95 out of every 100 cases that actually captures the population median within its bounds.

/ [N [N

v CONCLUSION

Expressing uncertainty in our test statistics is an important indicator of our results in Data
Science.

— e m e— e — e e

v 0s completed at 14:03 ® X

https://colab.research.google.com/drive/ThBPTdx50Tje8iZyasCYd89sQT3SCoPs5#printMode=true 13/13

