16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

~ IMPORTING AND MANIPULATING TABULAR DATA

by Dr Juan H Klopper

e Research Fellow
e School for Data Science and Computational Thinking
e Stellenbosch University

SCHOOL FOR
DATA SCIENCE &

COMPUTATIONAL
THINKING

KLOPPER

RESEARCH GROUP

v INTRODUCTION

Data Science by its name and nature requires us to have acces to data. We have learned that
images, sounds files, text, and much more pieces of information can be represented as data. In
this course, we concentrate on tabular data.

Tabular data is data in rows and columns, either extracted from an image, a database, or similar
structures and represented in an array. An array is a set of values in rows and columns. As in the
case of colour images, it can these rows and column can also be stacked on top of each other.
We will consider only sincgle stacks with data in a spreadsheet. There is a fantastic package for
importing such tabular data.

The pandas package has much to do with the success of Python as a programming language
for Data Science. It is an enormous package and is used to import data, to manipulate data, to
do calculations with data, and even create graphs and plots using the data.

In this notebook, we are going to get a glimpse into the usefulness of the pandas package by
importing some data captured in a spreadsheet file. We will then extract some of the data that is

of interest to us. In later notebooks, we will do all sorts of useful analysis on the extracted data.
https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 1/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

v PACKAGES FOR THIS NOTEBOOK

It is useful to import all packages at the start of a notebook. This allows us to keep track of what
we are using in the notebook.

1 import pandas as pd # Package to work with data

1 import numpy as np # Numerical analysis package

To import a file from a Google Drive, we need a special function. This is not required when
running Python on a local system, where we can simply refer to the address of the file on the
internal (or network) drive.

1 from google.colab import drive # Connect to Google Drive

Below, we us a magic command, $load_ext toload a google.colab.data_ table. It produces
better tables when using Colab and printing such tables to the screen.

1 # Format tables printed to the screen (don't put comment on the same line as the¢
2 %load _ext google.colab.data table

v IMPORTING DATA

In Google Colaboratory, we have to mount the cloud drive with our data file. As mentioned above,
this setp is not required when using a local system. When running the cell below a link appears
that you have to click on. A new tab will open up in your browser. You have to sign in to your
Google account again giving permission to this Colab notebook to read files from your Google
Drive (all in the name of security which is important). Once this is done a tab will open with a
secuirty link that you have to copy (there is a convenient icon next to the secuirty code that will
copy it). Copy it an close the tab. Then you have to paste the security key into the generated box
below the code and hit enter or return.

1 drive.mount('/gdrive', force remount=True) # Connect to Google Drive
2 # With force remount=True we can run this cell again later if needed

Mounted at /gdrive

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 2/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
Now we navigate to the desired folder in Google Drive by specifying its address as a string. The
address is a string and goes in a set of quotation marks. When you explore your own Google

Nriva cimnhs nAata tha laratinn Af a fila if vAill havua Aata etAarad eamawhar alea

Note that you can also import a data file from your local system. There is a code snippet that
you will find under the code snipper icon on the top left of this Colab notebook. The icon is the
<> icon under the magnifying class for searches. You can scroll down the list to find other
useful code snippets that you can use in your projects.

In the cell below, we see the 3cd magic command that let's us change directory.

1 %cd '/gdrive/My Drive/Stellenbosch University/School for Data Science and Compuf

/gdrive/My Drive/Stellenbosch University/School for Data Science and Computat

The 21s magic command will print a list of the files in the directory to which we changed into.

1 %1s
australia rain.csv Crops.csv DefaultMissingData.csv
bitcoin ethereum.csv customers.csv kaggle survey 2020 responses.csv
breast cancer.csv data.csv MissingData.csv
client data.csv DatesTimes.csv montague gardens construction.csv

We note that there is a csv file called customer data.csv.We canimport it using pandas'
read_csv() function. Since it is not a Python function, we have to specify where (from what
package) it came from. This is done by preceding the function with the pandas namespace
abbreviation that we used initially, pd.

1 df = pd.read csv('data.csv') # Import the spreadsheet file

Since we navigated to this directory with the 2cd magic command, we only need to type in the
name and extension of your spreadsheet file (using quotation marks as it is a string).

The type function used below shows that the object assigned to the df computer variable is a
DataFrame object.

1 type(df) # Type of the object held in the computer variable df

pandas.core.frame.DataFrame

We can look at the attributes and methods of dataframe objects using Python's dir function.

1 dir(df)y
https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 3/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

- N g

rtrueaiv ,
'sBP',
'sample’,
'select dtypes',
'sem',

'set _axis',
'set index',
'shape’,
'shift',
'size',
'skew',

'slice shift',
'sort _index',
'sort values',
'squeeze’,
'stack’,
'std’,
'style',
'sub’,
'subtract’',
'sum',
'swapaxes',
'swaplevel',
'tail',
'take',
'to_clipboard',
'to_csv',

'to dict',
'to_excel',
'to_feather',
'to_gbg',
'to_hdf',
'to_html’',
'to_json',
'to_latex',
'to_markdown',
'to numpy',
'to _parquet'’,
'to_period',
'to_pickle',
'to_records',
'to_sql',
'to_stata',
'to_string',
'to_timestamp',
'to_xarray',
'transform’,

'transpose’',
"truediv',
'truncate’,
'tz _convert',
'tz_localize',
'unstack',

'update’,
'value counts',
'values',
'var',

'where',

'xs']

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 4/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
There is quite a lot of them. Thw first few are the statistical variables (column headers in the
first row of the spreadsheet). We can explore each and every one of the rest of the methods and
attributes on the Pandas page for DataFrame objects.

Once such method is the head method. By default it returns the first five rows of a dataframe
object. An integer value can be passed as argument if we need a different number of rows.

1 df.head()

1 to 5 of 5 entries 0

index Name DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Survey Ch

Dylan 1981- Energy

0 plton 1007 3 momager 0 47 145 12 12 1
1 ﬁi”wir; (1)??237' 53 Tax adviser 0 51 115 12 06 3
2 wiiams 1221 %3 consutant 0 54 120 20 13 3
3 Ashley 1981~ 5 MNurse, 0 54 103 21 16 4

Since we used the 2load ext google.colab.data table magic command at the start of the
notebook, the dataframe object is printed to the screen in a very neat and useful way, allowing
us to navigate the data.

The shape attribute (property) shows use the number of rows and columns, returned as a tuple.
Note that unlike a method (which is like a Python function), an attribute has no parentheses.

1 df.shape # Nuber of rows (subjects) and columns (statistical variables)

(200, 13)

There are 200 observations (rows) and 13 statistical variables (columns) in this tidy data set.

The columns property list all the column header names, called labels.

1 df .columns # List the statistical variables

Index(['Name', 'DOB', 'Age', 'Vocation', 'Smoke', 'HR', 'sBP',
'CholesterolBefore', 'TAG', 'Survey', 'CholesterolAfter', 'Delta’,
'Group'],

dtype='object"')

The majority of DataFrame objects will have two axes (rows and columns). We can verify this
using the ndim attribute.

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 5/41

https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
1 df.ndim

The size attribute gives us the total number of data point values (the product of the number of
rows and columns).

1 df.size

2600

The last attribute that we will take a look at is the dtype attribute. It returns the Python data
type of the values in each of the columns. This is a very important step. Pandas does its best to
interpret the data type. Dependening on how the spreadsheet was created and how dat was
entered, it is not always possible to correctly interpret the type. In this case we might have to
change the data type. Remember that we base analysis of data on the dat type of the variable.

1 df.dtypes
Name object
DOB object
Age inté64
Vocation object
Smoke inte64
HR int64
SBP int64
CholesterolBefore float64
TAG float64
Survey int64
CholesterolAfter float64
Delta float64
Group object

dtype: object
Categorical variables are denoted as an object type. Numerical variable can be either integer

or floating point numbers (numbers with decimal places). These are int64 and float64
(denoting 64-bit precision) respectively.

We refer to the data about data as meta data. It is important to view the meta data of any data
that you import to make sure that the data did indeed import correctly and to start to learn a
little bit about the data.

v EXTRACTING ROWS AND COLUMNS

To analyse data, we want to extract only certain values. This is a very useful skill.

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 6/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
Pandas refers to a single column in a dataframe object as a Series object. We can also create
standalone series objects, but in the context of analysing data, a standalone series object is
perhaps not as useful. Below, we extract just the Age column (statistical variable) and save it as
a series object. The notation uses square brackets, with the column name represented as a
string.

1 age_column = df['Age'] # Note the use of square brackets

Our new object is indeed a series object.

1 type(age column)

pandas.core.series.Series
Since we have no illegal characters in the column name such as spaces, we can also make use
of dot notation. Below, we overwrite the age column computer variable by reassigning it (using
the same name).
1 age_column = df.Age # A shorter and more convenient way of extracting a column

We can display the first few rows in the series object with the head method.

1 age_column.head()

0 43
1 53
2 33
3 43
4 46

Name: Age, dtype: int64

Here we see further evidence that it is not just a Python list or a numpy array, but a series object,
by noting the index column.

At times it may be more useful to work with a numpy array, rather than a pandas series. To
extract the age values as a numpy array, we use the .to numpy method.

1 age = df.Age.to_numpy()

The object assigned to the age computer variable is a numpy array.

1 type(age)

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 7/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

numpy .ndarray

As a numpy array, it has a number of attributes and methods. We use the dir function again to
print out all the attributes and methods for this Python object type.

1 dir(age)

compress ,
'conj',
'conjugate’,
‘copy ',
'ctypes’,
'cumprod’,
'cumsum',
'data’,

'diagonal’,
'dot',
‘dtype’,
'dump ',
"dumps ',
'fill',
'flags',
'flat',
'flatten',
'getfield’,
'imag',
'item',
'itemset',
'itemsize',
'max’',
'mean’,
'min',
'nbytes’,
'ndim',
'newbyteorder',
'nonzero',
'partition’,
'prod’,
'ptp’,
'put’,
'ravel',
'real’,
'repeat’,
'reshape’,
'resize',
'round'’,
'searchsorted’,
'setfield’,
'setflags’,
'shape’,
'size’',
'sort’,
'squeeze’,
'std’,
'strides’',
'sum’,
'swapaxes ',
'take',
https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 8/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
'tobytes’,
'tofile',
'tolist',
'tostring’,
'trace',
'transpose’',
'var',
'view']

Below, we look at the minimum value and the maxiumum value in the age array, and calculate
the average of all the values using the .min, the .max, and the .mean methods.

1l age.min() # The minimum value in the array

30

1 age.max() # The maximum value in the array

75

1 age.mean() # The mean of all the values in the array

53.07

We can specify inidividual rows (subjects) by making use of the .iloc[] attribute (or property,
which is the term used by pandas) for a dataframe object. The iloc property stands for integer
location, so we must use integers to specify the row and column numbers. We add an index
value in square brackets for the property. Below, we extract the first row. Remember than Python
is 0 indexed, so the first column has an index of 0.

1 df.iloc[0]

Name Dylan Patton
DOB 1981-10-07
Age 43
Vocation Energy manager
Smoke 0
HR 47
sBP 145
CholesterolBefore 1.2
TAG 1.2
Survey 1
CholesterolAfter 0.7
Delta 0.5
Group Active

Name: 0, dtype: object

We can specify certain rows by passing a list of integer values.

1 df.iloc[[2, 3, 5]] # Rows 3, 4, and 6 (remember, we are starting the indexing af

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 9/41

16/07/2021

04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 3 of 3 entries 0

index Name DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Survey Chol
Samantha 1973- IT
2 Williams 12-21 33 consultant 0] 54| 120 20| 13 3
Ashley 1981- Nurse,
3 Hensley 12-01 43 children's 0] 54| 103 211 16 4
5 Leslie 1994 ¢ Politician's 0 59 122 28 14 4

Slicing is also allowed. This is done by specifying a range of values. The range object uses colon
notation. Below, we use 0:2. This includes the indices 0, and 1. The last index value in NOT
included.

first and second row

1 df.iloc[0:2] # The

1 to 2 of 2 entries 0

index Name DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Survey Cholest:
Dylan 1981- Energy
Paton 10-07 43 manager 0 47 145 12 1.2 1
Sandra 1993- Tax
Howard 0127 °° adviser 0 51 115 12 06 3

The columns can also be indexed. Here we use the row, column notation. Below then, we extract
the first five rows, but only for the DOB and Age variables, which are columns 1 and 2.

1 df.iloc[0:5,[1, 2]]

1 to 5 of 5 entries 0

index DOB Age
0 1981-10-07 43
1 1993-01-27 53
2 1973-12-21 33
3 1981-12-01 43
4 1964-06-23 46

Show per page

Above, we passed the rows as a range and the two columns as a list.

The .1loc[] property can be used in a similar fashion. Here we can specify the column names
(as a list or a slice). If the index values were not integers, but strings, we could also use those
names. Remeber that the row and column names are referred to as labels. Below, we extract the
same labels as we did above. Note, though, that the range includes the sixth row. When
extracting rows and column, ALWAYS use the row, column notation. Since we want two
columns, we pass them as a Python list object (in square brackets) after the comman. Each
column name is passed as a string.

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 10/41

https://colab.research.google.com/notebooks/data_table.ipynb
https://colab.research.google.com/notebooks/data_table.ipynb
https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

1 df.loc[0:5, ['DOB', 'Age']]

1 to 6 of 6 entries 0

index DOB Age
0 1981-10-07 43
1 1993-01-27 53
2 1973-12-21 33
3 1981-12-01 43
4 1964-06-23 46
5 1994-08-25 48

Show per page
The .iat indexing extracts a single cell by using its row and column index.

1 df.iat[3, 2]

43

Thereis also an at[] indexing, which does the same. Here we can specify labels, though.

v FILTERING DATA

Filtering data is one of the most useful things that we can do with data in a dataframe object. In
this section, we will start to learn how to filter data by extracting numpy array objects based on
criteria that we which to investigate or by creating brand new dataframes.

In order to do filtering we use conditionals. We have learned about these in the prviosu
notebook. For instance, below we ask if 3 is greater than 4 and then if 3 is equal to 3.0.

1 # A conditional returns a True or False value
23 >4

False

1 # The double equal symbols conditional
23 == 3.0

True

v FINDING UNIQUE VALUES IN A COLUMN

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 11/41

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
Remember that we refer to the sample space of a variable as all the possible values that a
variable can take. This is particulary useful when looking at categorical variables. The unique

mathnd ic 1icad +n find all tha ecamnla enara alamante in a ~AallMn

1 df.Smoke.unique() # Data entries encoded as 0, 1, and 2

array([0, 2, 1])

We note that there are three elements in the sample space of this column. This method is great
for surprises that might be hidden in a dataframe such as one or more strings in a numerical
data column. A common example would be the Age column that has one or two strings such as
thirty-two in it, instead of 32. Strings in a numerical data column will prevent calculations on that
column and such errors in the data must be corrected. We will learn how to change values using
the replace method later in this notebook.

v AGES OF ALL NON-SMOKERS

The smoke column contain information about the smoking habits of the respondents in the data
set. We have seen above that the sample space contains three integers, 0 for not smoking, 1
for smoking, and 2 for previous smoking.

Here, we are interested in creating an array that contains the ages of only the patients who do
not smoke in our dataframe. To do this, we use indexing directly. A conditional is used to include
only 0 patients (df.smoke == 0). We then reference the column that we are interested in, which
is age, followed by the to numpy method.

1 non_smoker age = df[df.Smoke == 0]['Age'].to numpy()
2 non_smoker_ age # Print the values to the screen

array([43, 53, 33, 43, 46, 48, 54, 58, 44, 31, 45, 35, 49, 56, 57, 35, 50,
49, 63, 45, 51, 40, 47, 41, 47, 38, 54, 30, 46, 64, 40, 45, 65, 55,
53, 54, 72, 32, 38, 59, 53, 42, 38, 51, 37, 36, 48, 49, 62, 39, 74,
42, 72, 61, 33, 30, 44, 71, 49, 75, 43, 55, 38, 36, 46, 60, 57, 69,
56, 66, 60, 42, 32, 31, 56, 35, 63, 54, 68, 72, 40, 54, 62, 74, 62,
41, 61, 61])

When first using this code, it may seem a bit difficult. It does read rather like an English language
sentence, though. Take the dataframe object. Extract the rows in column smoke that are 0. For
all of these rows return the age values as a numpy array.

As an alternative, we can use the loc indexing, passing a row and a column specification as
arguemnts. The row interrogates the smoke column and includes only those with a 0 entry. The
column is then specified to the the age column.

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 12/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
1 df.loc[df.Smoke == 0, 'Age'].to numpy()

array([43, 53, 33, 43, 46, 48, 54, 58, 44, 31, 45, 35, 49, 56, 57, 35, 50,
49, 63, 45, 51, 40, 47, 41, 47, 38, 54, 30, 46, 64, 40, 45, 65, 55,
53, 54, 72, 32, 38, 59, 53, 42, 38, 51, 37, 36, 48, 49, 62, 39, 74,
42, 72, 61, 33, 30, 44, 71, 49, 75, 43, 55, 38, 36, 46, 60, 57, 69,
56, 66, 60, 42, 32, 31, 56, 35, 63, 54, 68, 72, 40, 54, 62, 74, 62,
41, 61, 617])

The different ways to interact with pandas adds to its power and you can find a way to achieve
your data analysis goals that best first your way of work.

Since this is now a numpy array object, we can use methods such as the mean method to
calculate the average age of all the non-smoking participants.

1 non_ smoker age.mean()

50.09090909090909

v NON-SMOKER AGES WHERE SURVEY CHOICE IS 3

We now need to filter by two criteria (two columns), age and survey . The filtering can either
refer to and or or. In the first, we require all the criteria to be met and in the second, only one of
the criteria need be met (return a True value).

The symbol forand is & and fororis | . Below, we use & since we want both criteria to be met.
Each filter is created in a set of parentheses. the code uses the row, column notation.

1 non_smoker satisfied age = df.loc[(df.Smoke == 0) & (df.Survey == 3), 'Age'].to

In English the code reads: Take the df dataframe object and look down the rows of the smoke
and survey columns. Return only the rows where smoke is 0 AND survey is 3. Then return the
Age column for all these rows fulfilling both criteria.

v NEVER SMOKED OR SATISFACTION SCORE GREATER THAN 3

We are interested in those participants who never smoked OR those that have a satisfaction
score of more than 3. Here our filtering criteria requires only one of the two criteria to return
True . A clearer way to build these filtering criteria, is to save them as a computer variable first.

1 # Saving the filtering criteria as a computer variable
2 # The > symbol is used to indicate greater that 3

3 crit = (df.Smoke == 0) | (df.Survey > 3)
https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 13/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

We can now pass this to the 1oc property (as row and then specify the column name).

1 non_smoker or satisifed age = df.loc[crit, 'Age'].to numpy()

v NON-SMOKERS AND SATISFACTION SCORE OF 3 OR LESS

Non-smokers are either those who have never smoked (0) or those that are ex-smokers (2).
Both need inclusion. In other words, we need to exclude the smokers. It is easier to select just
one element. One way to deal with the interrogation of the data is through negation. We can
change our language into an opposte view, i.e start with filtering the current rows with a score of
greater than 3. Then we simply use negation with the tilde, ~, symbol to exclude these cases.

1 # Include those who do not smoke and have a score of more than 3
2 crit = (df.Smoke == 1) & (df.Survey > 3)

3

4 # Now we exclude these rows with a ~ negation symbol

5 not no smoker satisfied age = df.loc[~crit, 'Age'].to numpy()

6 not _no smoker satisfied age

array([43, 53, 33, 43, 46, 48, 54, 58, 44, 31, 45, 35, 49, 56, 57, 38, 35,
50, 45, 49, 63, 45, 51, 43, 31, 58, 40, 47, 45, 41, 47, 38, 54, 30,
46, 64, 40, 45, 65, 74, 55, 58, 53, 68, 54, 72, 32, 38, 59, 53, 42,
67, 38, 51, 37, 36, 34, 31, 48, 49, 62, 39, 74, 42, 60, 67, 42, 52,
37, 61, 72, 49, 49, 49, 43, 38, 45, 71, 73, 60, 70, 49, 65, 30, 50,
69, 72, 61, 33, 30, 44, 71, 49, 75, 43, 35, 55, 38, 36, 46, 60, 40,
57, 69, 56, 66, 60, 42, 49, 68, 32, 31, 56, 35, 63, 54, 68, 72, 40,
41, 66, 73, 36, 57, 74, 48, 72, 71, 42, 54, 58, 60, 63, 44, 55, 43,
71, 54, 61, 55, 67, 68, 71, 54, 57, 45, 62, 33, 74, 43, 35, 64, 55,
74, 50, 40, 62, 63, 68, 41, 72, 61, 70, 61, 65, 66])

CREATE A NEW DATAFRAME OBJECT THAT ONLY CONTAINS
PARTICIPANTS YOUNGER THAN 50

Instead of just an array of values, we want to create a new dataframe object. (Because itis a
part of an existing dataframe object, some Data Scientist refer to it as a sub-dataframe object.)
It includes all the columns (variables), but only for patients up to and including 49 years of age.
This is very simple to achieve.

1 new _df = df[df.Age < 50]
2 new_df.head()

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 14/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 5 of 5 entries 0

index Name DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Survey Ch

Dylan 1981- Energy
Patton 1007 43 manager 0 47 145 12 1.2 1
Samantha 1973- 33 IT ol 54| 120 20| 13 s

Williams 12-21 consultant

Let's verify the result of our code by looking at the maximum Age value of this new dataframe.
Below, we see three ways to return the maximum value in the new Age column.

1 new df.Age.max() # Using the column name directly

49

1 new df['Age'].max() # Using the column name as a column index name

49

1 new df.loc[:, 'Age'].max() # Using the loc property

49

Above we see the shorthand notation for including all elements, the colon, : . Since this is the
.loc[] property, we expect row and column labels. For the rows then, we use the colon symbol
to indicate that we are interested in all the rows. After the comma we indicate the column label
and outside of the .1oc[] indexing, we use the .max() method.

CREATE A NEW DATAFRAME FOR PARTICIPANTS WITH A RESTRICTED LIST
OF JOB TITLES

Up until now, we have had single values for our filter criteria, even though we had multiple
criteria. Here we might want to filter on more than one value, say IT consultant, Energy manager,
and Clinical embryologist. Since the sample space is quite large, negation would not be a good
solution as we would need to list all the other vocation sample space values. Here's how we
would create the new dataframe object, by making use of the isin method.

We create a list of the sample space elements that we are interested in. We then build a
criterium using the isin method. Its job is exactely what it sounds like, is in, i.e. select only an
element that is in the list.

1 # Create a Python list object with all the column names

2 jobs = ['IT consultant', 'Energy manager', 'Clinical embryologist']
3

4 # Build a criterium

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 15/41

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

5 crit = df.Vocation.isin(jobs)

6

7 # Create the new dataframe object and print the first 5 rows to the screen
8 jobs df = df.loc[crit]

9 jobs _df.head()

1 to 4 of 4 entries Q

index Name DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Survey Ch

O paton 1007 *® manager 0 47 145 12 12
2 \?\?ilrl?:r:tsha 127231- 33 L-Lnsultant 0 54| 120 20 13 3
4 \IIQV?IZ?: (1)26243; 46 S:Lrgf;ollogist 0| 61) 138 28 21 5
188 Gover 10.07 41 mamager 0 93 182 01 50 2

Show [25 v |per paae

CREATE A NEW DATAFRAME WHERE THE WORD MANAGER APPEARS IN
THE vocarroNn COLUMN

This filter uses a string method, str.contains. Itis ideal for free-form input cells in a
spreadsheet, where we can search for keywords. Below, we see an extra na=False argument.
This is used to deal with dataframe obejcts with missing data. We will learn how to deal with
missing data later.

1 # Build a criterium with the str.contains method

2 crit = df.Vocation.str.contains('manager', na=False)

3

4 # Create the new dataframe object and print the first 5 rows to the screen
5 vocation df = df.loc[crit]

6 vocation df.head()

1 to 5 of 5 entries 0

index Name DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Survey ClI

Dylan 1981- Energy

0 Ppatton 1007 manager 0 47 145 12 1.2 1
Tourist
Mr. Tyler . ,
34 Strickland 1940 46 Information 0 62 136 41 23 2
08-27 centre
DDS
manager
: Estate
Stephanie 1977-
54 | cobs 06.1s 38 manager/land 0 69 139 44 27 2
agent
Logistics and
55 “uan 1956~ 51 distribution 0 65 141 45 209 5

Johnson 12-09
manager

We note that the term manager appear in all the values for the Vocation column.

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 16/41

https://colab.research.google.com/notebooks/data_table.ipynb
https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

v UPDATING OR CHANGING THE VALUES IN A DATAFRAME

Another valueble skill is to be able to change actual data in a dataframe object. Fortunately,
datadrame objects can be manipulated in many ways. We begin by looking at changes to the
column names.

v RENAMING COLUMNS

We can replace the names of individual columns with the rename method using a dictionary.
Below we change Name to Participant. For changes to be permanent we need to change the
default inplace argument value to True.

1 df .rename(columns={ 'Name': 'Participant'}, inplace=True)
2 df.columns

Index(['Participant', 'DOB', 'Age', 'Vocation', 'Smoke', 'HR', 'sBP',
'CholesterolBefore', 'TAG', 'Survey', 'CholesterolAfter', 'Delta’,
'Group'],

dtype='object"')

1 df.head()

1 to 5 of 5 entries m Q

index Participant DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Survey C

Dylan 1981- Energy

0 patton 1007 manager 0 47 145 12 12 1
Sandra 1993- .

1 Howard 0107 53 Taxadviser 0 51 115 12 0.6 3
Samantha 1973- IT

2 Williams 1221 33 consultant 0| 54 120 20 13 3

3 Ashley 1981- 43 Nu_rse, 0 54 103 21 6 A

Haneclawv 12_N1

rhildran'e

v ADD 2 TO EACH AGE VALUE

In specific types of research, personal data are obfuscated to protect the privacy of the people in
the dataset. In a simple case, we might decide to subtract 2 from the age of every patient. In
reality, they are all 2 years older. To fix this prior to data analysis, we must add 2 to each age.

There are more than one way to achieve our goal. One way is to create a function and then use
the apply method to apply the function to the values in a column.

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 17/41

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
User-defined functions are created using thd def and return keywords. The former tells
Python that we are about the create a new function. After a space follows the name we want to
givw to our function. A set of parentheses follow that contains a placeholder for the argument.
In its simplest form, the latter keyword follows. As the name indicates thsi section returns a
value for our function. Below, it is clear from the code that x will hold an argument value. The
function then adds 2 to the argument value.

1 def add2(x):
2 return x + 2

The first five age values are printed below using the head method for the df.age series.

1 df .Age.head() # Before

43
53
33
43
46
Name: Age, dtype: int64

=S W N e o

The apply method is now used and the add2 function is used. The value in each row is now

increased by 2.

1 df .Age = df.Age.apply(add2)
2 df .Age.head() # After

0 45
1 55
2 35
3 45
4 48

Name: Age, dtype: int64

The 1ambda function in Python is a quick albeit more advanced way to achieve our goal. It
create a nameless function. Below, we subtract 2 from every Age entry to get back to where we

started.

1 df .Age = df.Age.apply(lambda x: x - 2)
2 df .Age.head()

0 43
1 53
2 33
3 43
4 46

Name: Age, dtype: int64

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 18/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

The simplest way to add a value would be to simply refer to a column (a series object) and
overwrite it. Remember that the = assignment operator assigns what is to its right to what is to
its left. Below, we use series notation to overwrite the age column by adding 2 to each row.

1 df.Age = df.Age + 2

v CHANGE NOMINAL VARIABLE TO ORDINAL VARIABLE

For the purposes of encoding, we might want to change all Active values to 0 and Control values
to 1 in the Group column. To do this, we could use the map method and then pass a dictionary
object as argument. The dictionary holds key value pairs. The key is the old value and the value
is the new value.

1 df.Group = df.Group.map({'Control':0, 'Active':1})
2 df.Group.head()

B W N R o
Nl o B =

Name: Group, dtype: int64

One problem with the map method is that it will delete the entries (rows) for values that we do
not specify. To keep the original data when not specified, we can use the replace method
instead.

v CHANGING COLUMNS

Adding columns is an often used technique when changing column. It is as simple as stating the
new name in square brackets as a string and then adding a list of values. We need it to be the
same length (number of rows) as the dataframe.

SPLITTING THE paTiENT COLUMN INTO A FirstName and LastName
COLUMN

Below, we create two new columns called FirstName and LastName from the Participant column,
splitting on the space using the str.split method.

1 new data = df.Participant.str.split(' ', expand=True)
https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 19/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

2 df['FirstName'] = new _data[0]
3 df['LastName'] = new data[l]
4 df .head()

1 to 5 of 5 entries Q

index Participant DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Survey C

Dylan 1981- Energy

0 Patton 10-07 45 manager 0| 47 145 12| 1.2 !
1 pandre 199 55 Taxadviser 0 51 115 12 06 3
2 \?\;ailrﬁ]aanr:;ha 12-7231- 35 Ic-gnsultant 0| 541 120 20| 13 3
e s Mo o 21 16 4

e O o s 20 21 s

Show |25 v |per paae

We can also combine two columns into one. Below, we use string concatination, combining the
last name, a comma with a space (as a string) and the first name.

1 df['Name'] = df.LastName + ', ' + df.FirstName
2 df .Name.head()

Patton, Dylan
Howard, Sandra
Williams, Samantha
Hensley, Ashley
Wilson, Robert
Name: Name, dtype: object

= W N e o

v CREATE A CATEGORICAL VARIABLE FROM NUMERICAL DATA

Below, we create three sample space elements: low, intermediate, and high for the
CholesterolBefore value of each patient. To do so, we use the pandas cut function with
specified bins. To understand the concept of bins, we start by looking at the minimum and
maximum values.

1 df.CholesterolBefore.min()

1.2

1 df.CholesterolBefore.max()

11.1

With the bins=3 argument, we create three equally sized bins in the range form 1.2 to 11.1.

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 20/41

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
In the code below, we create a new variable called cholesterolBeforelLevel . We use the
pandas cut function with three arguments. The first is a pandas series object (the colum of
interest). The second is the number of bins and the last is a list of names for each of the three
bins.

1 # Non-physiological binning of cholesterol values
2 df['CholesterolBeforeLevel'] = pd.cut(df.CholesterolBefore, bins=3, labels=['lov

Below, we view the first 10 new categorical values and actual values as a numpy array object.

1 df[['CholesterolBefore', 'CholesterolBeforeLevel']].head(10).to numpy()

array([[1l.2, 'low'],
[1.2, 'low'],
[2.0, 'low'],
[2.1, '"low'],
[2.8, 'low'],
[2.8, 'low'],
[2.9, 'low'],
[3.1, 'low'],
[3.1, '"low'],
[3.2, 'low']], dtype=obiject)

These three bins are non-physiological in that we have specific values for low, normal, and high
levels of cholesterol. To control the bin values, we can specify the bin cut-off values as a list. To
understand this we need to know about open and closed intervals. An open interval such as
(10, 20) means that neither 10 nor 20 are included. Inclusion requires a closed interval, denoted
by [10, 20]. We also have half-open intervals. In (10, 20], 10 is not included but 20 is. We can
also have (10, 20], with 10 not included and 20 being included.

Consider then the values 11.2, 12.2, 13.2, 15, 16, 16, 19.2, 20. Imagine then that everything
below 13 is low, 13 to below 16 is normal and 16 and above is high. Proper intervals would then
be[11.2, 13). Here we use the lowest value as the inlcuded lower bound, but 13 is not included.

A value of 13 would be in the second bin. The second bin would have bounds [13, 16) and the
last [16, 20].

In pandas we can only have left or right half-open intervals. The keyword argument right is set
to False by default, with right open intervals.

Thereis a right=True argument value. It states that the intervals are right-closed so that
bins=[10,20,30] would mean intervals (10,20] 10 not being included but 20 being included
here and (20,30] 20. Similarly the include lowest=False argument means that the left-most

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 21/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

value is not included (the 10 in this explanation). Set the argument to True to have the first

Below, we create three bins with intervals low = [0, 2.5), normal = [2.5, 5.0), and high =

[5.0, 20). So, if a patient has a cholesterol value of 5, they would fall in the high group. Note that
20 is above the maximum value and is a safe value to use. Note also that there are four
numbers for three bins.

1 df.CholesterolBeforeLevel = pd.cut(df.CholesterolBefore,

2 bins=[0,5,10,20],
3 right=False,
4 labels=['low', 'normal', 'high'])

v DELETE A COLUMN

Deleting a column can be achieved using the drop method. To make the deletion permamant,
we use the inplace=True argument. Let's delete our newly created Name column.

1 df.drop(columns=['Name'], inplace=True)
1 df.columns
Index(['Participant', 'DOB', 'Age', 'Vocation', 'Smoke', 'HR', 'sBP',
'CholesterolBefore', 'TAG', 'Survey', 'CholesterolAfter', 'Delta’,

'Group', 'FirstName', 'LastName', 'CholesterolBeforeLevel'],
dtype='object"')

v SORTING

Sorting can be a useful way to interact with our data. Below, we change the dataframe object by
sorting the LastNames alphabetically. All the corresponing column will change as well, so that
each row still pertains to the same patient.

1 df.sort values(by='LastName')

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 22/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 25 of 200 entries 0

index Participant DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Survey

Christopher 1963- . .
53 Abbott 06-12 69 Ergonomist 2 66 128 44 26 y
Mary 1952- Furniture .
170 Aguilar 01-09 64 designer 0O 88 182 8.3 5.1 Z
James 2000- .
22 Aguilar 11-05 53 Immunologist 0 64 134 3.7 20 1
Marissa .
81 Anderson 1 240- 5 Nurse, leaming 1 75 170 50 2.7 :
05-15 disability
PhD
Andrea 1974- Horticultural
152 Anderson 04-08 75 consultant 1) 85| 183 79| 42 ‘
Elizabeth 1949- Newspaper .
160 Ashley 11-23 69 journalist 1) 87| 187 81 43 ‘
Gregory 1956- Trade mark .
112 Avila 09-30 38 attorney 0 78 168 6.3 3.9 :
Joshua 1978- . .
43 Avila 01-19 55 Media planner 0 64 129 43 25 z
Michael 1977- Exhibition .
23 Banks 08-19 45 designer 2 62 132 3.7 26 :
Operational
171 Mary 1993- 1 35 | investment 1 88 179 83 49 :
Barnett 10-21
banker
199 Julie Barrett 1272 gg 1nheme park 1 102 208 111 57 :
07-27 manager
Jonathan 1938- Landscape
178 Bautista 06-28 66 architect 1) 89 198 85| 48 1
Justin 1963- Insurance
82 Bennett 04-04 71 broker 1) 66| 142 50| 3.0 ‘
. Careers
142 Nichole 1954- 1 56 information 1 82 175 76 39 :
Best 10-31 .
officer
Michael 1973- Fish farm
127 Black 03-18 37 manager 0 85 178 71 3.9 Z
Leah 1938- . .
183 Blankenship 09-22 64 Dramatherapist 0 90 176 87 53 K
Kenneth 1934- Magazine
44 Bowman 07-13 70 features editor 1) 68 135 43| 3.4 1
1959- Waste
33 Kyle Boyd 32 management 0 63 133 40 25 £
12-30 .
officer
Angela 1977- .
168 Boyer 06-11 59 Dancer 1 88 174 82 50 P
1979- Pharmacist, .
58 John Boyle 07-30 36 community 1 66 148 45 3.2 z
g9 Mr Bradiey 1990- o5 Conservation 0 64 136 37 20 .

The alphabetical order can be reversed by using the acending=False argument.

1 df.sort _values(by='LastName', ascending=False)

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 23/41

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 25 of 200 entries 0

index Participant DOB Age Vocation Smoke HR sBP CholesterolBefore TAG
100 Kristina 1994 o, 5 oicultural consultant 0 70 157 57 36
Zimmerman 01-01
Frank 1981- .)
6 Zimmerman 03-04 56 Police officer 0 60 129 29 24
Janet 1981- . .
60 Young 03-18 33 Aeronautical engineer 1 65 133 45 23
James 1997- Advertising account
185 Wright 0920 ©° executive 1) 871193 88| 53
157 Jodi Wood 1,??269; 56 Animal technologist 0 87 173 8.0 4.0
Angela 1988- Building control
184 Wilson 05-19 67 surveyor 1 90 190 88 45
Angela 1983- Designer,
191 Wilson 08-24 67 television/film set 1| 92| 202 93] 50
Steven 1947- Surveyor, planning
179 Wilson 02-17 57 and development 1) 89| 194 86| 53
Robert 1964- - .
4 Wilson 06-23 48 Clinical embryologist 0 61 138 28 2.1
Jason 1944- .
97 Williams 12-22 60 Herpetologist 1 71 148 56 34
24 Clifford 1957- " 33 Special effects artist 2 60 134 37 25

Williams 05-04

Samantha 1973-
2 Williams 12-21 35 IT consultant 0 54 120 20 13

Bob 1991- Commercial/residential

159 Williams 03-10 57 surveyor 1) 82 167 8.1) 44
o 2y My 7y
21 b\‘szgx 82?284; 47 Chemist, analytical 0 60 115 37 21
4T e 11os ¥ exnitions offcer 0 63 137 43 30
73 SV?”.EZ' 827253 39 Brewing technologist 1 65 136 49 25
o fe % g Fronemooians g gy
10 \J,\j‘ggs (1)2?(% 47 Charity fundraiser 0 62 121 32 17
o I Wt 7 g
93 \?ngrger gg?zg 51 Paramedic 2 68 149 53 36
143 \J,\?arz:gr 12?’186 73 Cytogeneticist 1 104 205 7.7 43
175 \r\;iaimoc:: ;??107_ 45 Personnel officer 1 87 193 84 50
30 \B/;ilt:’;ﬁela (1)2?022' 49 Therapist, horticultural 0 59 132 39 26
34 %A{)ﬁg?;fr:d o a8 I:‘;t”rztr':;?‘ggztr'on 0 62 136 41 23

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 24/41

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://colab.research.google.com/notebooks/data_table.ipynb
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
We can sort by more than one column at a time. This is done by passing a list of column names.
Below, we sort by Age and the sBP. With default values, numerical and date values will be from
smaller to larger values and from earlier to later dates and categorical variables will be

alnhahatiral

1 df.sort values(by=['Age', 'sBP'])

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 25/41

16/07/2021

04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 25 of 200 entries 0

index Participant DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Surve!
1950- Waste
33 Kyle Boyd 32 management 0 63 133 40 25 !
12-30 .
officer
96 Brandi 1973- 32 Communlcatlons 1 72 159 55 37
Ibarra 11-01 engineer
Mary 2001- .
103 Rodriguez 07-07 32 Music tutor 0 74 168 59 34
g Andrea 1995- 53 Lexicographer 0 59 122 32 17 !

Fletcher 12-23

The three participants aged 30 now have their systolic blood pressure values in ascending order.

24 0T am . 33

Not all the column names passed as a list to sort by, need be in the same order. We can also

wpLUIUL viTvULo 2 60

pass a list with corresponding order.

IVIIGT eI 1904~
a7 T

34

exhihitions 0 B3

134

137

1 # Sort Age in ascending and sBP in descending order

2 df.sort values(by=['Age’,

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true

'sBP'], ascending=[True, False])

3.7

43

2.5

30

26/41

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021

04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 25 of 200 entries 0

index Participant DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Surve!
Mary 2001- :
103 Rodriguez 07-07 32 Music tutor 0 74 168 59 34
96 Brandi 1973- 32 Communlcatlons 1 72 159 55 37
Ibarra 11-01 engineer
1959- Waste
33 Kyle Boyd 32 management 0 63 133 40 25 !
12-30 .
officer
Victoria 1956- Pharmacist,
125 Gordon 08-05 33 community 0| 83 165 7.0| 4.2
Clifford 1957- Special effects
24 Williams 05-04 33 artist 2| 60| 134 37| 25 ‘
60 Janet 1981- 33 Aergnauhcal 1 65 133 45 23
Young 03-18 engineer
Andrea 1955- . |
9 Fletcher 12-23 33 Lexicographer 0 59 122 32 17 !
Renee 1948- Corporate
124 Schneider 09-24 34 treasurer 0| 83) 170 70| 41
. Museum/gallery
Michael 1954- e
47 White 11-24 34 exhlbltlons 0 63 137 43 3.0 !
officer
Operational
171 Mary 1993- 1 35 | investment 1 88 179 83 49
Barnett 10-21
banker
Nhviati;mA A1AN09D N ArmAarmaaihos

The three patients aged 30 are now sorted by the highest systolic blood pressure first.

Z

The sort_value method does not make permanent changes to the dataframe, unless the

Williame

12.21

390

Il consuitant Uu 954 124V Z.U

argument inplace (whichis setto False by default) is setto True.

Black

03-18

manager

1.3

The nlargest method is useful if we only want to view the highest numerical values in a

column. Below, we look at the 15 highest systolic blood pressure values.

VT UL

1 df.sBP.nlargest(15)

197
199
143
190
194
191
195
198
174
178
189
166
173
163
179
Name:

212
208
205
203
203
202
201
200
198
198
198
196
195
194
194

sBP, dtype:

Ravmond

03-18

inté64

v

ITUpMIvOovIH AU v v

v [Rv] Tve V.o

enerqy

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true

27/41

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

We can reverse the order of the syntax above a bit, if we want to see the rest of the columns too.

1 # Column is listed as arguemnt
2 df.nlargest (10, 'sBP')

1 to 10 of 10 entries Q

index Participant DOB Age Vocation Smoke HR sBP CholesterolBefore TAG Survey

Chartered
Charles 1959- o
197 Smith 01-30 63 certified 0 99 212 101 5.6 4
accountant
Julie 1972- Theme park
199 Barrett 07-27 68 manager 1 102 208 1.1 57 2
Jeremy 1938- -
143 Wagner 12-10 73 Cytogeneticist 1 104 205 7.7 43 3
Rachel 1970- Medical sales
190 Mcguire 12-23 64 representative 1) 92| 203 93| 51 4
Jeffery 1973-
194 Silva 11-25 72 Bookseller 1 94 203 99 54 1
Designer,
Angela 1983- S
191 Wilson 08-24 67 television/film 1 92 202 93 5.0 5
set
1936- Sales
195 John Curtis 68 professional, 1 96 201 10.1 5.1 5
11-25 T
Barry 1979-
198 Porter 05-30 67 Dancer 1 98 200 10.1 53 3
Heidi 1974- Occupational
174 Gaines 06-26 66 therapist 1 89 198 84 45 4
Jonathan 1938- Landscape
178 Bautista 06-28 66 architect 1) 89| 198 85 48 !

Show per page

If we want the smallest values, there is also a nsmallest method.

v MISSING VALUES

v THE NUMPY nan VALUE

It is very often that datasets contain missing data. The numpy library has a specific entity called
a nan value. This stands for not a number. Below, we see it by itself and also as an element in a
Python list.

1 np.nan

nan

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 28/41

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

lmy list = [1, 2, 3, np.nan]
2 my_ list

[1, 2, 3, nan]
The list object, my 1ist, above, cannot be used as argument to functions such as sum, since

Python does not know how to deal with this missing data. Below, we use the numpy sum
function. The results is a nan value.

1 np.sum(my_list)

nan

Now, let's have a look at how pandas deals with misssing values. We will import another
spreadsheet file that contains missing data.

v A DATAFRAME WITH MISSING DATA

1 missing df = pd.read csv('MissingData.csv')

The DataFrame has the following columns: age, salary, and previous company Most of the
columns are self-explanatory. The previous_company indicates whether the person had
previously used a different investment company instead of ours or had no investment at all.

When we print the dataframe object, we note all the nan values, which pandas uses to indicate
missing data.

1 missing df

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 29/41

16/07/2021

04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 25 of 32 entries 0

index age salary previous_company
0 57.0 NaN 1.0
1 56.0 50927.0 NaN
2 46.0 75500.0 3.0
3 NaN 84417.0 NaN
4 60.0 63002.0 1.0
5 54.0 54652.0 NaN
6 NaN 65739.0 1.0
7 64.0 89397.0 3.0
8 60.0 77797.0 4.0
9 61.0 NaN 1.0
10 51.0 92767.0 5.0
1 NaN 59873.0 2.0
v DELETING MISSING DATA
1< Ol1.v Oo44£0.V £.V

The first way of dealing with missing data, is to simply remove all the rows that contain any

missing data. This is done with the .dropna() method. To make the changes permanent, we

would have to use the inplace=True argument. Instead of permanent removal, we create a

new dataframe object.

1 complete data df =
2 complete data_ df

missing df.dropna() # Non permanent removal

1 to 19 of 19 entries 0

index age salary previous_company

2 46.0 75500.0 3.0

4 60.0 63002.0 1.0

7 64.0 89397.0 3.0

8 60.0 77797.0 4.0
10 51.0 92767.0 5.0
12 49.0 91001.0 4.0
13 59.0 54212.0 4.0
14 61.0 84423.0 2.0
17 48.0 63824.0 5.0
18 53.0 53143.0 20
20 55.0 79309.0 20
22 49.0 52895.0 1.0
23 57.0 54035.0 3.0
24 58.0 64962.0 3.0
26 63.0 63861.0 20
27 47.0 55188.0 3.0
28 63.0 61220.0 3.0
30 49.0 63398.0 1.0
31 57.0 94900.0 5.0

Show per page

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 30/41

https://colab.research.google.com/notebooks/data_table.ipynb
javascript:void(0)
javascript:void(0)
https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

There is another argument for this method, how that is set to any. This default states that if
any of the values in a row are missing, the whole row is dropped. There is also an a11 value for
this argument that will only remove a row if all the values are missing.

Another argument is axis. By default this is setto 0 or index, which indicates that we are
interested in dropping rows. When setto 1 or columns, columns will be dropped.

We can constrain which columns to include when checking for missing values, using the
subset argument.

1 missing df.dropna(subset=["'age'])

1 to 25 of 28 entries 0

index age salary previous_company

0 57.0 NaN 1.0

1 56.0 50927.0 NaN

2 46.0 75500.0 3.0

4 60.0 63002.0 1.0

5 54.0 54652.0 NaN

7 64.0 89397.0 3.0

8 60.0 77797.0 4.0

9 61.0 NaN 1.0
10 51.0 92767.0 5.0
12 49.0 91001.0 4.0
13 59.0 54212.0 4.0
14 61.0 84423.0 2.0
16 61.0 84930.0 NaN
17 48.0 63824.0 5.0
18 53.0 53143.0 2.0
19 49.0 59842.0 NaN
20 55.0 79309.0 2.0
21 59.0 NaN 4.0
22 49.0 52895.0 1.0
23 57.0 54035.0 3.0
24 58.0 64962.0 3.0
25 61.0 NaN 1.0
26 63.0 63861.0 2.0
27 47.0 55188.0 3.0
28 63.0 61220.0 3.0

Show per page E] 9

We see that there are still missing data in the salary and previous_company collumns.

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 31/41

https://colab.research.google.com/notebooks/data_table.ipynb
javascript:void(0)
javascript:void(0)

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
To find out how many rows contain missing data, we can make use of the fact that True and
False are represented by 1 and 0 and can thus be added. The isna method will return Boolen

valiiae AanandinAa Ann whathar tha Aata ic micecinna

1 missing df.age.isnal()

0 False
1 False
2 False
3 True
4 False
5 False
6 True
7 False
8 False
9 False
10 False
11 True
12 False
13 False
14 False
15 True
16 False
17 False
18 False
19 False
20 False
21 False
22 False
23 False
24 False
25 False
26 False
27 False
28 False
29 False
30 False
31 False

Name: age, dtype: bool

We can sum over these Boolean values using the sum method. Since True values are saved
internally to Python as the value 1, the sum will be the number of values marked as True when
missing, which as we saw, is what the isna method returns.

1 missing df.age.isna().sum()

We see that there are 4 missing values in the age column.

v REPLACING MISSING VALUES

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 32/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
The process of creating values to fill in missing data is called data imputation and is a seperate
and complicated subject. The pandas library provides a fillna method for filling in the missing
data with simple calculations.

Below we use the argument and value method=££i11 which simply fill empty values with
previous value. There is also a method=bfill argument setting that fills the missing data with
the next available data down the column.

1 missing df.age.fillna(method="'£f£fill")

0 57.0
1 56.0
2 46.0
3 46.0
4 60.0
5 54.0
6 54.0
7 64.0
8 60.0
9 61.0
10 51.0
11 51.0
12 49.0
13 59.0
14 61.0
15 61.0
16 61.0
17 48.0
18 53.0
19 49.0
20 55.0
21 59.0
22 49.0
23 57.0
24 58.0
25 61.0
26 63.0
27 47.0
28 63.0
29 54.0
30 49.0
31 57.0

Name: age, dtype: floaté64

We can also specify a specific value. For numerical data this could be the median for that
variable and for categorical data, it might be the mode. We will learn about summary statistics in
the next notebook. For now, we will use the median method. It calculate the median for a
column with numerical data, ignoring missing data automatically.

1 # The median age (pandas ignores the missing values)
2 missing df.age.median()

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 33/41

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory
57.0

We can now impute the missing ages with this median.

1 missing df.age.fillna(missing df.age.median())

0 57.0
1 56.0
2 46.0
3 57.0
4 60.0
5 54.0
6 57.0
7 64.0
8 60.0
9 61.0
10 51.0
11 57.0
12 49.0
13 59.0
14 61.0
15 57.0
16 61.0
17 48.0
18 53.0
19 49.0
20 55.0
21 59.0
22 49.0
23 57.0
24 58.0
25 61.0
26 63.0
27 47.0
28 63.0
29 54.0
30 49.0
31 57.0

Name: age, dtype: floaté64

If we want the changes to be permanent, we have to use the inplace=True argument.

v DEFAULT MISSING DATA

It is common to use default values when data is not available at the time of capture. If we know
what these are, we can interpret them as missing data when the spreadsheet file is imported.

Below, we import a spreadsheet file that uses 999, Nil, and Missing for missing values
instead of leaving the spreadsheet cell blank.

1 default missing df = pd.read csv('DefaultMissingData.csv')

2 default missing df
https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 34/41

16/07/2021

index

age

04ImportingAndManipulatingData.ipynb - Colaboratory

salary

1 to 25 of 32 entries 9

previous_company

© ©W 6o NoOoOO g A~ WDN -~ O

N DM NN @ @Q @2 @2 22 @2 2 a2 =
W N = O ©W 00 N OO O A ODN =

24

57
56
46
999
60
54
999
64
60
61
51
999
49
59
61
999
61
48
53
49
55
59
49
57
58

Nil

50927
75500
84417
63002
54652
65739
89397
77797
Nil

92767
59873
91001
54212
84423
Nil

84930
63824
53143
59842
79309
Nil

52895
54035
64962

1
Missing
3
Missing
1
Missing

W N BN, AW -

Missing
5
2
Missing
2

W W = b

Show per page

[I] 2

We can replace the missing values or specify all the words and numbers used for coding

missing data when we import the data file.

1 default missing df

2 default _missing df

= pd.read csv('DefaultMissingData.csv', na values=[999, 'Nil

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true

35/41

https://colab.research.google.com/notebooks/data_table.ipynb
javascript:void(0)
javascript:void(0)

16/07/2021

04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 25 of 32 entries 0

index age salary previous_company
0 57.0 NaN 1.0
1 56.0 50927.0 NaN
2 46.0 75500.0 3.0
3 NaN 84417.0 NaN
4 60.0 63002.0 1.0
5 54.0 54652.0 NaN
6 NaN 65739.0 1.0
7 64.0 89397.0 3.0
8 60.0 77797.0 4.0
9 61.0 NaN 1.0
10 51.0 92767.0 5.0
11 NaN 59873.0 20
12 49.0 91001.0 4.0
13 59.0 54212.0 4.0
14 61.0 84423.0 20
Those values ar now Nan.
i 40.V 05644.U o.v
v WORKING WITH DATES AND TIMES
21 [Nelp NlaNI AN

In this section, we import a new spreadsheet file. It contains data on dates and times of

biological laboratory investigations.

1 dt = pd.read csv('DatesTimes.csv')

2 dt

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 36/41

https://colab.research.google.com/notebooks/data_table.ipynb
javascript:void(0)
javascript:void(0)

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 24 of 24 entries 0

index ID Batch SpecimenDate TestDate TestTime
0 183 3 2025/04/21 2025/04/26 12:23
1 198 2 2025/04/21 2025/04/26 12:26
2 194 1 2025/04/22 2025/04/26 12:11
3 192 2 2025/04/22 2025/04/25 12:05
4 143 2 2025/04/22 2025/04/25 13:45
5 143 2 2025/04/22 2025/04/26 11:59
6 171 2 2025/04/22 2025/04/25 12:34

Let's take a look at the data types.
9 121 3 2025/04/23 2025/04/26 11:34
1 dt.dtypes

ID inté64

Batch int64

SpecimenDate object

TestDate object

TestTime object

dtype: object
17 190 1 2025/04/26 2025/04/29 12:32

The SpecimenDate, TestDate and the TestTime columns contain objects instead of datetime
objects. We can convert these into a proper datetime data type. We will do so by creating a new
variable (column header) that combines the two of the columns.

22 157

1 2025/04/28 2025/05/01 10:33

1 dt['DateTime'] = dt.TestDate + ' ' + dt.TestTime # Add a space
2 dt

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 37/41

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021

04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 24 of 24 entries 0

index ID Batch SpecimenDate TestDate TestTime DateTime
0 183 3 2025/04/21 2025/04/26 12:23 2025/04/26 12:23
1 198 2 2025/04/21 2025/04/26 12:26 2025/04/26 12:26
2 194 1 2025/04/22 2025/04/26 12:11 2025/04/26 12:11
3 192 2 2025/04/22 2025/04/25 12:05 2025/04/25 12:05
A 14 2 2N2KINAI?D 2ND2K/NAIDR 1AR 2NI2K/INAIIR 1-AR

This new variable is still an object.

~

1 dt.DateTime.dtype

dtype('0")

—vevr v e

PR RV T =

v v e e

We will now create a new column and use the pandas to datetime() function to convert the

object (copied from the DateTime column). The format= argument allows us to specify the

exact format that the object was in. The format of the data in the pateTime column is
YYYY/MM/DD HH:MM. We use pandas code to indicate these. Uppercase %y specifies the full
year, i.e. 2025 instead of just 25. The rest of the symbols are self explanatory.

18 141

2 2025/04/126

2025/04/30

12:17

2025/04/30 12-17

1 dt['datetime'] = pd.to_datetime(dt.DateTime, format='%Y/%m/%d $H:%M')

2 dt

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true

38/41

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 24 of 24 entries 0

index ID Batch SpecimenDate TestDate TestTime DateTime datetime

~ ann A AAAFIA A~ AAArFIA AIAA 4~ AN AAAFIAAIAA 4N~ AN~ AAAF A4 AR 4N~ AR~ AR

The new datetime column is now a datetime object.

L 194 I £ZUZLO/IV4/ L4 £LUZLDIVU4£0 111 ZLUZLDIVUAIZO 1411 £ZLUZLO-U4-£0 14£.11.UV
1 dt.dtypes
ID int64
Batch int64
SpecimenDate object
TestDate object
TestTime object
DateTime object
datetime datetime64[ns]
dtype: object
12 179 2 2025/04/24 2025/04/29 14:45 2025/04/29 14:45 2025-04-29 14:45:00

Now that this is a datetime object, we might want to analyze this data by month of test. To do
so, we create a new column containing the month and use the dt.month name method. We
also shorten the month to the first three letters using the str.sl1ice method with the stop
argument setto 3.

18 141 Z ZUZOIU4/Z0 ZUZOIV4I3U 1401 ZUZOIVAISU 1411 £ZUZD-U4-3U 1471 /UU

1 dt['month'] = dt.datetime.dt.month name().str.slice(stop=3)
2 dt

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 39/41

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

1 to 24 of 24 entries 0

index ID Batch SpecimenDate TestDate TestTime DateTime datetime month
N B S N E o 2025104126 2025-04-26

There are various other values, we can extract from the datetime object.

N 'RV L vV LvLvIVTI v 1e.ov 12,26 12:26:00 et

1 dt.datetime.dt.year # The year

0 2025
1 2025
2 2025
3 2025
4 2025
5 2025
6 2025
7 2025
8 2025
9 2025
10 2025
11 2025
12 2025
13 2025
14 2025
15 2025
16 2025
17 2025
18 2025
19 2025
20 2025
21 2025
22 2025
23 2025

Name: datetime, dtype: inté64

1 dt.datetime.dt.hour # The hour

0 12
1 12
2 12
3 12
4 13
5 11
6 12
7 13
8 13
9 11
10 9
11 13
12 14
13 15
14 14
15 12
16 13
17 12
18 12
19 11
20 11
21 10

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 40/41

https://colab.research.google.com/notebooks/data_table.ipynb

16/07/2021 04ImportingAndManipulatingData.ipynb - Colaboratory

22 10
23 11
Name: datetime, dtype: inté64

v CONCLUSION

Pandas is a powerful library and we are going to use all the techniques that we have learned
about here to manipulate our data in order to do analyses on it.

There is still a lot we have to learn over and above this, though. We will do so, whilest analysing
our data.

v 0s completed at 13:52 ® X

https://colab.research.google.com/drive/1dbqcbH-n6pKRW SsjohWIMaPHIPUxBmWz#scroll To=BK VNiEhPSJ31&printMode=true 41/41

