16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

~ THE PYTHON LANGUAGE FOR DATA SCIENCE

by Dr Juan H Klopper

e Research Fellow
e School for Data Science and Computational Thinking
e Stellenbosch University

SCHOOL FOR
DATA SCIENCE &

COMPUTATIONAL
THINKING

v INTRODUCTION

We begin some actual coding by exploring the basics of the Python programming language.

Python is a general purpose language. It can be used for creating standalone programs, games,
websites, and much more.

Computer languages such as C and Julia are compiled languages. This means that before the
code it executed it is converted completely into a machine language by a process termed
compilation. This ensures fast execution. Python is instead an interpreted language. In Python
each line of code is executed in line without compilation. Although slower, it makes for easier to
understand code.

There are versions of Python. A current newest version is continuously being released. A base of
core developers are tasked with these updates. Version 3 of the language has been availaible
for some time. Currently version 3.10 is getting ready for release. All older version 2 releases
have been deprecated and no development is taking place for these versions.

~ THE PYTHON ECOSYSTEM FOR DATA SCIENCE

https://colab.research.google.com/drive/ 1 ftNUbuft WJEIInKueF5ywmo49JSQaS5X 7#scroll To=FpTEtTXCtxvs&printMode=true 1/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
Due to its exstensible nature and its ease of use, it has become the favourite programming
language for Data Science. As a language for Data Science it can be scripted. This means that
we can write short snippets of code (a line or a few lines of code) and explore the results, i.e. we
do not have to write a whole program before executing it in order to get results. Iterating over

thic nrarace Af writina eninnate allawe far nranar Aata analucie

Extensibility refers to packages that have been developed that extend the core language. These
packages are developed by thousands of individuals and groups from across the globe. There
are packages that have been exclsusively designed for data managament and analysis. These
packages are sometimes referred to as the scientific stack. In this course we learn about the
most common packages in the scientific stack. This ensures that anyone taking this course will
be well equipped to take on real-world problems.

The most common packages used in Data Science are numpy (short for numerical computing),
scipy (short for scientific python) which extends the functionality of numpy. Matplotlib aand
plotly are commonly used plotting libraries. We will use plotly is this course. It produces
interactive plots that enhance our ability to understand data. Pandas is a data package that
allows us to import and manipulate data. Scikit-learn is an excellent machine learning package.
Lastly, we have to mention TensorFlow, the opne source package by Google for deep learning.
Google has recently added the DecisionForest module to TensorFlow and these allow us to build
random forest machine learning models. We will use this module to create these machine
learning models.

v TOOLS FOR USING PYTHON

We have learned about coding environments in the first notebook. These are the sotware
programs that we use to type our Python code into. Commonly used coding environments
include Jupyter notebooks, PyCharm, Spyder, and Microsoft Visual Studio Code.

Jupyter notebooks are run in an internet browser. One such example is Google Colab that uses a
type of Jupyter notebook. Google Colab is our coding environment for this course. It is available
as an app in Google Drive. Anyone with a Google email account has Google Drive and hence
access to Google Colab. Using Google Colab means that we do not have to install any Python
software or coding environment to our local computers. We can also easily share our work or
communicate our results, the same as any Google app.

Remember to go to https://colab.research.google.com once you have signed up for a free

Google account. This will add Google Colab to all the other Google Drive apps that are available
to you.

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 2/27

https://colab.research.google.com/

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
It's time to start exploring the Python language. The simplest way to start is through simple
arithmetic. Python can act as a giant calculator.

v ARITHMETIC

We are all familiar with the basic arithmetical operators such as addition and multiplication. The
simple use of mathematical operations in Python are examples of expressions. The actual
symbols such as + and - are termed operators. TABLE 1 below shows a list of these

operators.
TABLE 1
Expression Operator Example Result

Adding + 2 + 2 4
Subtracting - 8 - 3 5
Multiplying * 2 x 2 4
Dividing / 8 / 4 2
Integer devision // 10 // 3 3
The remainder % 10 ¢ 3 1
Exponentiation = 2 *x 4 8

We explore these common expression below.

~ ADDITION

We start by adding 2 + 2, which should results in 4. To excute a cell, we can hold down the
SHIFT key on our keyboard and then hit the NETER key on a Windows or Linux machine or
ENTER on a Mac. There is also a button the the left of ease cell in Google Colab that we could
click.

12 + 2 # Hold SHIFT and hit ENTER (PC / Linux) or RETURN (Mac) to execute a cel!

12 + 2

Note use of spaces between the 2 and the + symbol. This is simply for easy of reading. We
could also omit the spaces and write 2+2. Note also the use of a code comment. A code

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 3/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
comment is started by a pound symbol or hashtag. Python ignores any script following a pound
symbol (for a specific line of code). We use code comments to leave messages to ourselves
and those that may use our code.

More than two numbers can be added in a single expression. Below we add 2 and 2 and 10.

12+ 2 + 10

14

v SUBTRACTION

One number is subtracted from another using the - operator.

17 -4

More than one number can be used in a subtraction expression.

110 - 3 - 4

~ MULTIPLICATION

Since keyboards do not have a multiplication key, we use the * symbol for this operation. It is
ususally a part of the 8 key.

13 * 4 # Multiplication is the * symbol (SHIFT and 8)

12

13 * 4 * 2 # More than two numbers

24

v DIVISION

As with multiplication, we make use of another key for this operation. It is the forward slash key,
/.

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 4/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

110 / 2 # Division is the / key

5.0
Note that we used integers, but the results is expressed in decimal format.

120/ 8

2.5

The result of dividing 20 by 8 results in a value with a decimal point. We can use the //
operator to return only the whole number (integer) part of the solution.

120 // 8 # Integer devision

2

Since 2 X 8 = 16, we have a remainder of 4 (to get to 20). We can express the remainder using
the % operator.

120 $ 8 # Remainder

4

v POWERS

Consider the exponentiation below in (1).
22=2x2x2=38 (D)
We use the double asterisk symbols, *=*, for taking powers.

1 2**3 # Power is a double asterisk ** symbol

8

v THE ORDER OF ARITHMETICAL OPERATIONS

Remember that there is an order to mathematical operations, i.e. division and multiplication
comes before subtraction and addition. In the expression 3 + 4 X 2, the 4 and 2 and multiplied
first resulting in 8. The 2 is then added to yield 11.

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 5/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
13+ 4 * 2 # Multiplication before addition

11

Parentheses are used to force the order of operations. Below, we add 3 + 4 first and then
multiply the results by 2.

1 (3 + 4) * 2 # Force the order by using parentheses

14

v Exercise

Calculate the following

(6+4)x2
10

1 # Place your solution here

» Solution

[1 2 1cellhidden

v COMPARISON OPERATORS

Comparison operators are used to return the value of a comparison. The return is one of two
value: True or False based on the comparison being made. The operators are listed in TABLE

2 below.
TABLE 2
Comparison Operator True example False Example
Less than < 2<4 4<?
Greater than > 452 254
Less than or equal to <= 4<=4 2<=4
Greater than or equalto >= 4>=4 2>=4
Is equal to == 4==40 4 ==
Is not equal to I= 41=2 41=4

Below, we run through the examples in TABLE 2. Follow the code comments.

1 # Less than

22 < A
https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 6/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

- e ~ =

True

1 # Greater than
24 > 2

True

1 # Less than or equal to
24 <=4

True

1 # Greater than or equal to
24 >= 4

True

1 # Value equality
24 == 4.0 # Although the type differs the values are equal

True

1 # Value inequality
24 '=2

True

1 # Less than
24 < 2

False

1 # Greater than
22 >4

False

1 # Less than or equal to
24 <= 2

False

1 # Greater than or equal to
22 >= 4

False

1 # Value equality
2 A —_— N
https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 7727

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

L X —— 4

False

1 # Value inequality
24 =4

False

v FUNCTIONS

A lot of what we do in Python requires a function. A function is a keyword in the language that
takes some input (always provided inside of a set of parenthesis that directly follow the function
keyword) and gives an output. An input is called an argument (or sometimes a parameter).
Below, we pass the argument 'This is easy,' tothe function print(). The outputis a
screen printout of the input.

1 print('This is easy.')

This is easy.

As we continue, we will learn more and more functions. The functions or keywords in Python
have rules of use. This is much like a spoken language. In essence, we are learning a new
language. Not to worry, it is much simpler than learning a new spoken language.

v DATATYPES

Much of what we work with in Python are of a certain computer data type. This type sets the
rules for what we can do.

One helpful function is the type() function. It tells us the computer data type that we are
working with. Think of the number 3. In mathematics, it is an integer.

1 # Integer specified by the abbreviation int
2 type(3)
int

Once we add a decimal place, we change the computer data type. For instance 3.0 is a decimal
value. These are termed floating point values in most computer languages.

1 # Floating point number specified by the abbreviation float

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 8/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
Z type(3.0)

float

Characters and text are termed strings. They are placed in single (or double) quotation marks.

1 # Text specified by the abbreviation str
2 type('KRG')

str

When numbers are placed in quotation marks, they become strings and we can no longer use
them for calculations.

1 type('8")
str

Adding strings concatenate them. Below we add three strings to each other. Note the inclusion
of spaces in each string.

[1

1 'Python ' + 'is ' + 'a ' + 'powerful ' + 'language' +
'Python is a powerful language.'

The str function converts its argument to a string. Below we use it to first calculate a solution
and then convert it to a string.

1 'The solution to 1 + 1 is ' + str(l + 1) + '.'

'The solution to 1 + 1 is 2.'

All the examples above are referred to as objects. The number 3 is an object and the string
Python is an object.

v THE MATH MODULE

One of the major strengths of Python is the community that grows the language. In many cases
these are interested individuals who write packages and modules that extend the core language
with new functions. These are made freely available and we can import them. This is done with
the import command. The math package is actually an in built Python package and provides
access to the mathematical functions defined by the C language standard.

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 9/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
Note: If you are using Python on a local computer, packages that are not built in Python
packages have to be installed prior to importing them.

1 # Import the math module
2 import math

This module adds many mathematical constants and functions when imported. Below we take a
look at a few. You can learn more at https://docs.python.org/3/library/math.html

Once a package has been imported, we can now use its functionality. To use the function in a
package we have to refer to the package name and use dot notation. We start my looking at the
built in constants.

v MATH CONSTANTS

Two of the most famous irrational numbers are & and e (Euler's number). To use these
constants, we need to specify the name of the package followed by a dot and then the constant
name.

1 math.pi # Note the use of dot notation

3.141592653589793

1 math.e

2.718281828459045

The math.e constant is the same as the exp function in the math module. We pass an
argument of 1 to this function, to replicate what we would do in mathematics, where every
number raised to the power 1, is just that number. This is shown in (2).

el =e (2)

1 math.exp(1)

2.718281828459045

v TRIGONOMETRIC FUNCTIONS

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 10/27

https://docs.python.org/3/library/math.html

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
The math package provides for all the trigonometric function. We use keywords such as
math.sin for the sine function and math.tan for the tangent function. The argument that we

nace miiet ha in radiance In 2\ wa can a cina fiinAatinn and than wa ranlicrata it in ~Ada

/4
sin{ =) =1 3
(3) ®

1 # Sine
2 math.sin(math.pi / 2)
1.0
In (4) we have a cosine function.

/4
cos|=)=0 4
(3) “@

1 # Cosine
2 math.cos(math.pi / 2)

6.123233995736766e-17

We note a result with 16 zeros after the decimal point. This is a truncation error and the result is,
in essence, 0.

v Exercise

Calculate the following

(5

1 # Write your solution here

» Solution

[1 “17cellhidden
v LOGARITHMS

Consider the function in (5).

log, b= c (5)

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 11/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
Since 1000 is 10 to the power 3,1og;, 1000 = 3. The math.log10 function calculates log
based 10.

1 # Base 10 logarithm
2 math.logl0(1000)

3.0

The math.log function has a base of e (Euler's number). This calculate the natural logarithm.

1 # Natural logarithm
2 math.log(math.e)

1.0
v ROOTS

The math.sqrt function calculates the square root, shown by example in (6).

V236 = 162 (6)

1 math.sqrt(256)

16.0
v IMPORT ALTERNATIVES

There are alterantives to importing the functionality from a package. One such alternative is the
use of a namespace abbreviation. Namespace refers to the functionality in a package (all the
names of the function in a package for instance). We could then use the abbreviation below.

1 import math as m
To use a function such as sqrt we can now type m.sqrt instead of math.sqrt.

1 # Square root of 9
2 m.sqrt(9)

3.0

We can also import a function or functions by name.

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 12/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

1 # Importing the sine and cosine functions and the pi constant
2 from math import sin, cos, pi # Note the sepaartion by a comma

Now we don't have to use the math or m dot notation.
1 # Sine of pi over 2

2 sin(pi / 2)

1.0

If we want to import all the functions in a package we can use the * wildcard.

1 from math import *

1 # No dot notation
2 1og10(100)

2.0

Now all the functions and constants can be used without dot notation. We need to caution
against this approach through. Some packages have function names that are the same as
Python core functions. These will then overwrite the core function, making them inaccessible.

Most packages have subpackages, sometimes called modules. For instance the scipy package
has a stats module containing many functions for statistical analysis. We will learn how to
import and use these modules during teh course.

Although any abbreviation can be used, some have become very common such as np for
numpy. In this course we will use these common abbreviations.

v COMPUTER VARIABLES

A computer variables is a name that we give to a space in computer memory where we want to
save an object to. An object is a piece of information with a type. Remember that 3 is of type
int . Objects include simple numbers, strings, and the solution to calculations. We have seen
the type function that gives us the type of an object.

There are some restrictions and suggestions to the names we can use for computer variables.

¢ Use names that start with a lowercase letter
e Make it descriptive

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 13/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
» Use snake case my variable name (or the less popular camel case myNewvariable)
e Don'tuse python functions or keywords

v CREATING AN OBJECT AND ASSIGNING IT TO A COMPUTER VARIABLE

Below, we assign an object of type float to a computer variable that we choose to be
my value. The equal symbol, =, is the assigment operator in Python, and is not the familiar
equal sign in mathematical functions.

1 # Create a computer variable to hold a floating point object
2 my value = 3.0 # Assign an object which is a floating point number to a compui

We can recall the object that in now saved in memory by calling the computer variable name.
Calling a variable to display or use its conent is done by simply typing it.

1 # Recall the object in the computer variable
2 my value

3.0

1 # Type of object held in the computer variable
2 type(my_value)

float

The content in the computer variable can be updated with new values or objects.

1 # Starting value
21i=0
31i

The computer variable i now holds an integer, the value being 0. Below we add 1 to the already
held value.

1# Add 1 to i
2i=1+1
31i

The assigment operator assigns what is to its right to what is to its left. So, in the code above, i
already held the value 0. In essence our coderead i = 0 + 1 and now i=1.

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 14/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

It is typical to use shorthand notation as seen below.

1 # Short-hand update

21 +=1
31
2
v Exercise

Do the following:

e Create a computer variable to hold the string 'This is easy.
e Recall the computer variable
e Confirm that the computer variable indeed holds an object that is a string

1 # Create your computer variable for assigment here

1 # Recall the variable

1 # Determine the type of the object assigned to the computer variable

» Solution

[1 “4cells hidden

v COLLECTIONS

It becomes useful to work with more than just a single value. For this, Python has a variety of
objects that can contain a collection of elements. We start with list objects.

v LIST OBJECTS

A list in Python is created using a set of square brackets. The elements are all seprarated by a
comma.

1 # A list object conatining only a single element
2 [10]

[10]

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 15/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

1 # Create a list with five elements using square brackets and a comma between eac
21, 2, 3, 4, 5]

For the sake of brevity we can omit the term object. Here then, we will simply stat a list instead
of a list object.

Lists can have objects of different data types.
1 # List with elemnts of various types

2 [1, 'two', 3.]

[1, 'two', 3.0]
The type function will return a 1ist data type.
1 # Type of the object

2 type([1l, 'two', 3.1])

list

As before, we can assign a list object to a computer variable name.

1 # Creating a list and saving it in a computer variable
2my list = [1, 2, 3, 4]

1 # Recall the content of the computer variable
2 my_ list

(1, 2, 3, 4]

When we pass a list as argument to the 1en function, it returns the number of elements in the
list.

1 len(my list) # Using the len() function

In Python, objects have methods and attributes (properties). We use these by placing a dot .
after the object and then writing the method or the attribute name. Methods are like functions
and attributes (properties) just tell us something about the object. Because methods are like
functions, we end them with parenthesis and we can pass arguments to them. Attributes have
no parenthesis.

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 16/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

The count method takes an argument value that it then looks for in the object. It returns how

many times the argument appears in an element of the list.

1 # Using the .count method and looking at how many times 3 occurs in the list ob:

2 my list.count(3)

We can create lists inside of lists.

1 # Creating a nested list object
2 my nested list = [[1, 2, 31, [3, 4, 51]
3 my nested list

[(r1, 2, 31, (3, 4, 511
The 1en function counts the number of these nested lists.

1 # Length of the nested list
2 len(my nested list)

The append method can add new elements to the end of a list.

1 # Add the integer 5 to my list
2 my list.append(5)

1 # View the appended list object
2 my_list

The pop method removes the last element and displays that element to the screen.

1 # Remove the last element
2my list.pop() # Will show the removed element

1 # View the list object
2 my_list

(1, 2, 3, 4]

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true

17/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
Every element in a list has a adress called its index. We can request the value held at an index or
even request more than one value. Below, we create a new list named my other list which
contains three elements.

1 # Create my other list
2 my_other list = [10, 20, 30]
3 my other list

[10, 20, 30]

Python indexing starts at 0. That means the index of the first elemenst is 0. If we have n
elements in a list, its last element will have an index of n — 1.

1 # Show first element in my other list
2 my other list[0] # Python is zero-indexed

10

1 # Show second element
2 my other list[1]

20

1 # Third and last element
2 my other list[2]

30

The index -1 retruns the last element. It is convenient if we do not know how many elemenst
arein a list.

1 # Short hand for showing the last element
2 my_other list[-1]

30

A slice of the list can return more than one element. Below we use a colon, 0:2, in our indexing.
It will return objects zero and one. When using indexing in this way, the last element (2 here) is
not included.

1 # Show first and second elements
2 my_other 1list[0:2] # Last index-value is not included

[10, 20]

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 18/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

Nested lists can make use of more than one index. Below, we recall my nested list.

1 # Recall my nested list
2 my_nested_list

(e, 2, 31, [3, 4, 5]]

The second element (index 1) in the first nested list (index 0) is returned below.

1 # Show second element of the first nested list of my nested list
2 my nested list[1][O0]

Indexing can be used to change the content of a list. Below, we change the last element in
my other list to —40.

1 # Change the last element in my other list to -40
2 my_other list[-1] = -40
3 my other list

[10, 20, -40]

Double colon symbols, :: can be used to include all element from the start up to a certain value
or from a ceratin value to the end of the list.

1 my other list[l::] # Element 2 until the end

[20, -40]

v Exercise

Do the following

e Create a list with 10 elements from 0 through 9

e Use indexing to print the first 5 elements of the list

» Use indexing to print every second element (Hint: The colon symbol can also include a
step size,i.e. 0:10:2 would be elements 0, 2, 4, 6, 8, as the step sizeis setto 2)

1 # Create the list here (with an appropriate name)

1 # Print the first five elements

1 # Everey second element

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 19/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

» Solutions

[1 “3cells hidden

v TUPLES

Tuples are much like lists. The elements are immutable, though. This means that they cannot be
changed once created.

1 my tuple = (3, 5, 'two')
2 my tuple

(3, 5, '"two')

1 my tuple[-1] # Each element still has an index

'two'

Elements of a tuple can be named over an above having an index. Below we assign the
computer variable names one, two, and three to each element of my tuple.

1 one, two, three = my tuple
We can now recall a value by using its name.

1 one # Recalling one

v DICTIONARIES

Dictionaries are collections where each element is a key-value pair. Every value has a key (a
name). Python uses curly braces to indicate dictionaries.

1 # create a dictionary of key-value pairs
2 my dict = {'Language':'Python',

3 'Version':3,

4 '"Environment':'Colab'}

We can call up the keys with the keys method and the values with the values method.

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 20/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
1 # Keys
2 my dict.keys()
dict keys(['Language', 'Version', 'Environment'])
1 # vValues

2 my dict.values()

dict values(['Python', 3, 'Colab'])

All the key-value pairs can be retrieved using the items method.

1 # Retrieve keys and values
2 my dict.items()

dict items([('Language', 'Python'), ('Version', 3), ('Environment', 'Colab')]

To return the value of a specific key, we use the get method.

1 # Value of Version key
2 my dict.get('Version')

Instead of curly braces, the alternative syntax uses a list of tuples as a list and the latter as
argument to the dict function.

1 # Alternative syntax with list of tuples

2 my other dict = dict([('Language', 'Python'),

3 ('Version', 3.8),

4 ('Environment', ['Spyder', 'Notebook'])])
5 my other dict

{'Environment': ['Spyder', 'Notebook'], 'Language': 'Python', 'Version': 3.8}

v LOOPS

Loops allows us to run over some code many times, depending on some criteria. Here, we
investigate the for and the while loops.

v FOR LOOP

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 21/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory
The range function is convenient for generating sequences. With a single-value integer
argument it generates a list starting at O and increments in a step size of 1 until the specified
value minus 1. The specified value is not included. The function returns a range object that can

ha 1iecad fAr itaratinn (Auar ite alamante)

1 range(10) # Generating the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

range(0, 10)

Below, we see an example of a for loop. We generate a loop counter, i which will loop over the
values specified in the range function. Each of the values in the range is printed during the
iteration.

1 # Loop through 0 to 9
2 for i in range(10):
3 print(i)

OW 00 o Ul WN P O

We can loop through the elements of a list object too. The element name down below is just a
placeholder name.

1 my_other list # Recall the object

[10, 20, -40]

1 # Loop through elemnts in my other list and print them
2 for element in my other list:
3 print(element)

10
20
-40

Below, we use a for loop to print the keys of a dictionary.

1 # Loop through keys in my dict and print them
2 for key in my other dict.keys():
3 print(key)

Language

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 22/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

Version
Environment

v WHILE LOOP

We can also loop over code while a condition is met. We start with a counter and then use the
while loop which will continue until a condition is met, or more precisely, the loop terminates

when the condition returns a False value.

1 # Print values while less than 5
21 =0 # Start value

3 while i < 5:

4 print(i)

5 i += 1 # Increment by 1

=S W NN e O

Remember that i < 5 is a conditional and will return either a True ora False value. The loop
will continue as long as a True value is returned.

v Exercise

Loop over the following

e Create a computer variable called my string and assign the string object This is easy.’
to it
* Loop over each character in the string and print it to the screen

1 # Generate the list object
1 # Calculate the number of characters
1 # Loop over each character and print it to the screen

» Solution

[1 “ 3cells hidden

v USING CONDITIONAL OPERATORS

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 23/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

Sometimes, we only want to execute code when some condition is met. The if, elif, and
else statements all help us do this.

Below we store an integer value in a computer variable. When then set a condition. If the integer
object's value is less than a certain number, we print something to the screen, but if it is not, then
we print something else to the screen.

1 # Check on condition

2 i = 23 # Set the value of the integer
3

4 if i < 20:

5 print('Smaller than 20')

6 else:

7

print('Equal to or greater than 20')

Equal to or greater than 20

Since 23 > 20 the second string prints to the screen.
We can concatenate more than one condition by inserting the el1if keyword.

1 # Using elif

2a=2

3b=1

4 if b > a:

5 print("b is greater than a")
6 elif a ==

7 print("a and b are equal")

8 else:

9 print("a is greater than b")

a is greater than b

v Example excerise

In this famous computer task, we take a range of numbers (0 through 21 in this case). For each
number, if it is divisible by some integer, say 3 (no remainder), then we print foo, else we print

bar.

1 # foo-bar
2 for i in range(22):
3 if i & 3 == 0:

4 print(i, ' foo')
5 else:
6 print(i, ' : bar')

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 24/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

0 foo
1 bar
2 bar
3 foo
4 bar
5 bar
6 foo
7 bar
8 bar
9 foo
10 bar
11 bar
12 foo
13 bar
14 bar
15 foo
16 bar
17 bar
18 foo
19 bar
20 bar
21 foo

v LIST COMPREHENSION

At times it is convenient to generate a list using a loop with or without conditionals. This is a
more advanced topic and is only introduced here.

Below, we geberate a list containing the integers 0 through 50.

lmy set = [i for i in range(51)]

2 my set[0:5] # Print first 5

Now we show every number in the list that is divisible by 3.

1 [i for i in my set if i % 3 == 0]

(o, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48]
As a more complicated example, we square each value in the list if that value is divisible by 5.

1 [i**2 for i in my set if i % 5 == 0]

[o, 25, 100, 225, 400, 625, 900, 1225, 1600, 2025, 2500]

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 25/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

v THE NUMPY LIBRARY

At the root of many computations and also as prerequisite for many packages in Python is the
numerical Python package numpy. It is actually written in C wrapped into Python functions that
execute the advanced code much faster than core Python. We examine some of the useful
functions in the numpy package below. Many of them replace the functionality that we have
seen in this notebook.

v ARRAYS

Arrays are much like Python lists. Before we can use numpy, we have to import it. We do so with
a namespace abbreviation, np, that is commonly used.

1 import numpy as np
We generate arrays with the array function. The elements are still passed as a list.

1 my array = np.array([0, 1, 2, 3]) # Note the use of the namespace abbreviation
2 my array

array([0, 1, 2, 3])
1 my other array = np.array(range(l10)) # Values 0 through 9

2 my other array

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)

Arrays have very useful methods. Some of these methods are also available as numpy
functions.

v ARITHMETIC ON NUMPY ARRAYS

Below we list some of the useful arithmetical operations we can use with arrays. They are
specified as code comments.

1 # Adding the elements of an array
2 my other array.sum()

45

Since the mean (or average) of a set of values is simply their sum divided by their count (which
we can calculate using the 1en function), we can easily calculate the mean of the values in

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 26/27

16/07/2021 03ThePythonLanguageForDataScience.ipynb - Colaboratory

my_other array.

1 # Mean of values in array
2 my other array.sum() / len(my other array)

4.5

There is an easier way to achieve this by using the mean method.

1 my other array.mean()

4.5

v CONCLUSION

This was a brief, but as we shall see later, a very useful introduction to Python and using scripts
in the cells of a notebook. Python is a well-structured, easy to understand language that we can
use in scripting form to do Data Science.

v 0s completed at 13:49 ® X

https://colab.research.google.com/drive/1ftNUbuftWJEIInKueF5ywmo49JSQa5 X 7#scroll To=FpTEtTXCtxvs&printMode=true 27127

