Localisation accuracy of semi-dense monocular SLAM

Kristiaan Schreve

Stellenbosch University

kschreve@sun.ac.za

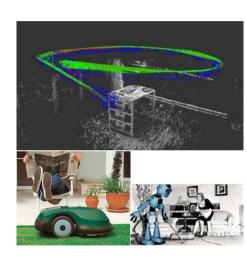
June 27, 2017

Overview I

- **Introduction**
- Modelling and Simulation
- 3 Experiments Simulation
- Experiments Real world
- 5 Conclusion

Introduction I

- What is SLAM?
- What is monocular SLAM?
- Why semi-dense?
- Why monocular SLAM?
- Why is localisation accuracy important?



3/19

Kristiaan Schreve (SU) June 27, 2017

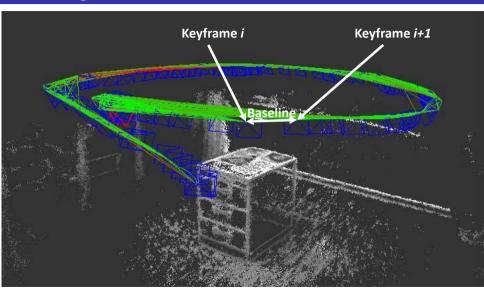
Introduction II

- Objective
 - Under ideal conditions, what is achievable?
- Method
 - Modelling and Simulation
 - Real world experiments

Modelling and Simulation I

- Why simulation?
 - Reliable ground truth very difficult to obtain
 - Good control over system parameters Easier
 - to study effects of system parameters
- Assumptions:
 - Artificial Scene Points
 - Perfect point matching
 - No bias errors
 - No image distortion
 - Data scaled to real world coordinate system
 - Simulate 100 m straight line motion
- Based on ideas from LSD-SLAM and PTAM
- PTAM updates camera pose by doing a bundle adjustment on selected keyframes

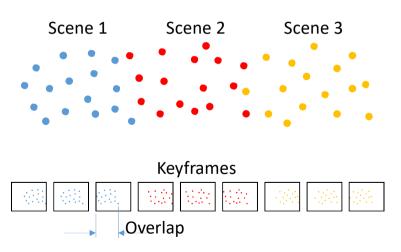
Modelling and Simulation II



Kristiaan Schreve (SU) Populas State June 27, 2017 6/

Modelling and Simulation III

Constant number of 3D scene points (randomly distributed)



Modelling and Simulation IV

Minimise

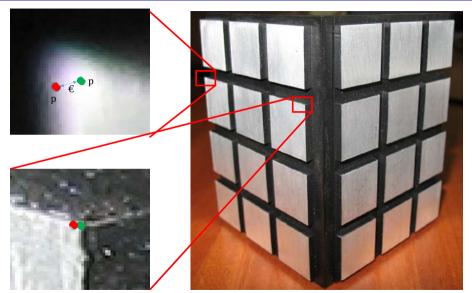
$$S = \frac{2m-1}{(E_i)^2}$$

$$E_i = (p_{u_i} - \tilde{p}_{u_i}) \qquad i \in 0 \dots m - 1$$

$$E_i = (p_{v_i} - \tilde{p}_{v_i}) \qquad i \in m \dots 2m - 1$$

- Where
 - m is the number of scene points
 - where $(p_{u_i}, p_{v_i})^T$ is the originally identified image point
 - $(\tilde{p}_{u_i}, \tilde{p}_{v_i})^T$ is the back projected point

Modelling and Simulation V



Kristiaan Schreve (SU) June 27, 2017 9 / 19

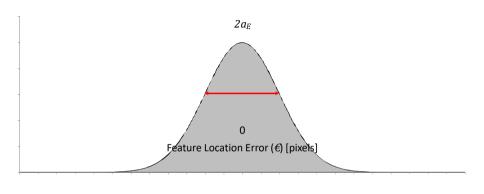
Modelling and Simulation VI

- Localisation uncertainty represented by measurement noise covariance R_t
- ullet R_t influenced by bundle adjustment step (function of camera pose).
- Use Law of Error Propagation to estimate R_t . For least squares problems, this is

$$R_t = \frac{2S}{n-p}H^{-1}$$

- *H* is the Hessian of the cost function $S = \int_{i=0}^{3} \frac{2m-1}{(E_i)^2} (Hessian of S)$ with respect to camera pose parameters)
- n is the number of system equations, i.e. n = 2m
- p is the number of variables to be solved.
- We need a value for S

40.40.41.41.1.1.000



$$\sigma_{E}^{2} = \frac{\int_{1}^{\infty} \frac{2m-1(E_{i}-E)^{2}}{2m} = \frac{S}{2m}$$

↓□▶ ←□▶ ←□▶ ←□▶ ←□▶ ←□▶

Kristiaan Schreve (SU) June 27, 2017

Modelling and Simulation VIII

Using the Law of Error Propagation, it is known that

$$\sigma_E^2 = J_s \Lambda J_s^T$$

- Where
 - J_s is the Jacobian of S

$$J_{S} = \begin{bmatrix} 1 \\ \frac{\partial S}{\partial \lambda}, \frac{\partial S}{\partial f}, \frac{\partial S}{\partial x}, \frac{\partial S}{\partial y}, \frac{\partial S}{\partial z}, \frac{\partial S}{\partial \varphi}, \frac{\partial S}{\partial \vartheta}, \frac{\partial S}{\partial \psi}, \frac{\partial S}{\partial u_{1}}, \frac{\partial S}{\partial v_{1}}, \cdots, \frac{\partial S}{\partial u_{m}}, \frac{\partial S}{\partial v_{m}} \end{bmatrix}$$

 Λ is the covariance matrix of the input variables (focal length, scale factor, camera pose, image points)

< ロ ト ← 個 ト ← 重 ト ← 重 ト 一重 ・ か Q ()

Experiments - Simulation I

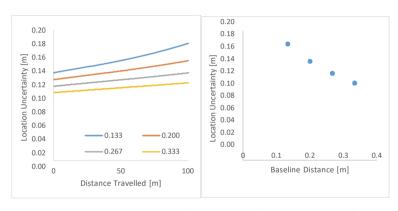


Figure: Camera uncertainty when varying the effective baseline.

Experiments - Simulation II

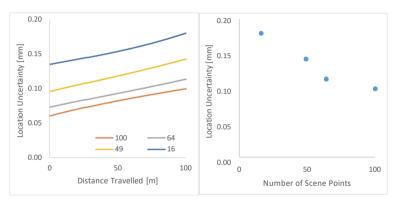


Figure: Camera uncertainty when varying the number of scene points.

Experiments - Simulation III

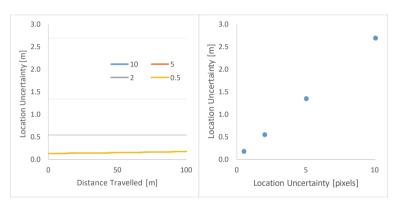


Figure: Camera uncertainty when varying the image point location uncertainty.

15 / 19

Kristiaan Schreve (SU) Robotos 814 June 27, 2017

USB webcam (Logitech c170 with 640x480 resolution)
 Measurement wheel (GRIP GT9050)

Experiments = Receive worldstance scaling)

5. Laptop running LSD-SLAM

Figure: Experiment hardware setup sol). USB webcam (Logitech c170 with 640x480 resolution) 2) Measurement wheel 3) GoPro Hero 3 (used for distance scaling) 4) Tape 5) Laptop running LSD-SLAM

Experiments - Real world II

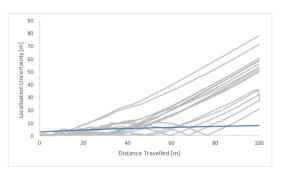


Figure: Experimental results compared with simulation results. The grey curves are the experimental results scaled after a distance of 5 m. The blue curve is a comparable simulation result.

Conclusions I

- Simulation showed influence of systems parameters
 - Increasing baseline reduces localisation uncertainty
 - Effect of number of scene points decreases asymptotically
 - Linear dependence on feature location accuracy
- Real world experiments
 - Large errors associated with monocular SLAM

Thank You