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Introduction |

® What is SLAM?
@ What is monocular SLAM?

® Why semi-dense?

® Why monocular SLAM?

® Why is localisation accuracy
important?
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Introduction |l

@ Obijective
@ Under ideal conditions, what is achievable?

@ Method
@ Modelling and Simulation
@ Real world experiments
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Modelling and Simulation |

® Why simulation?
@ Reliable ground truth very difficult to obtain
@ Good control over system parameters Easier
@ to study effects of system parameters

©® Assumptions:
@ Artificial Scene Points
@ Perfect point matching
@ No bias errors

2 No image distortion
@ Data scaled to real world coordinate system
@ Simulate 100 m straight line motion

@ Based on ideas from LSD-SLAM and PTAM

® PTAM updates camera pose by doing a bundle adjustment on
selected keyframes
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Modelling and Simulation Il
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Modelling and Simulation Il
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Modelling and Simulation IV

® Minimise

-1
S = (Ei)?

i=0

Eiz(pu,-—ﬁu,-) |60m—1
Ei = (py;, — Pv) ieEm...2m-1

@ Where

2 m is the number of scene points
@ where (py, py;)" is the originally identified image point
e (Py, Py) T is the back projected point
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Modelling and Simulation
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Modelling and Simulation VI

® Localisation uncertainty represented by measurement noise covariance
Rt

©® R influenced by bundle adjustment step (function of camera pose).

©® Use Law of Error Propagation to estimate R¢. For least squares
problems, this is

Re= B 1
n—-p
@ H is the Hessian of the cost function S = ), 21’:"6 L(E/)? (Hessian of S

with respect to camera pose parameters)
© n is the number of system equations, i.e. n = 2m

@ p is the number of variables to be solved.
©® We need a value for S
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Modelling and Simulation VIII

® Using the Law of Error Propagation, it is known that

o2 = JsNIJ
@ Where
@ J; is the Jacobian of S
1os 9s 0s oS 9S 9S oS 0S 9S 0S 9 0s !

J_s':

oA of ox 9y 9z 9 09 oY dui Ovi  OUm OVm

@ A is the covariance matrix of the input variables (focal length, scale
factor, camera pose, image points)
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Experiments - Simulation |
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Figure: Camera uncertainty when varying the effective baseline.
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Experiments - Simulation Il
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Figure: Camera uncertainty when varying the number of scene points.
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ments - Simulation Il
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Camera uncertainty when varying the image point location uncertainty.
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Experiments - R.2al viorld |

Figure: Experimemwaardwm&t&),.USB webcam (Logitech c170 with
640x480 resolution) 2) Measurement wheel 3) GoPro Hero 3 (used for distance
scaling) 4) Tape 5) Laptop running LSD-SLAM
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Experiments - Real world |l
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Figure: Experimental results compared with simulation results. The grey curves
are the experimental results scaled after a distance of 5 m. The blue curve is a
comparable simulation result.
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Conclusions |

@ Simulation showed influence of systems parameters

@ Increasing baseline reduces localisation uncertainty
@ Effect of number of scene points decreases asymptotically
@ Linear dependence on feature location accuracy

@ Real world experiments
© |arge errors associated with monocular SLAM

Kristiaan Schreve (SU) June 27, 2017 18/ 19



Thank You

Kristiaan Schreve (SU) June 27, 2017 19/ 19



	Slide Number 1
	Overview I
	Introduction I
	Introduction II
	Modelling and Simulation I
	Modelling and Simulation II
	Slide Number 7
	Modelling and Simulation IV
	Modelling and Simulation V
	Modelling and Simulation VI
	Slide Number 11
	Modelling and Simulation VIII
	Experiments - Simulation I
	Experiments - Simulation II
	Experiments - Simulation III
	Slide Number 16
	Experiments - Real world II
	Conclusions I
	Slide Number 19

