Coordinated planning of harvest and roads at SCA

Victor Asmoarp. The Forestry Research Institute of Sweden Mikael Bergqvist. The Forestry Research Institute of Sweden Patrik Flisberg. The Forestry Research Institute of Sweden Mikael Frisk. The Forestry Research Institute of Sweden Mikael Rönnqvist. Université Laval. Canada

Seasonal climate variation

Insufficient bearing capacity

- High costs due to quality losses
- Higher transport costs due to road blockings

Methods

- Central Tyre Inflation
- Terminal storage
- Road investments

Seasons and forest roads

January - Winter

Forest roads classification

- A&B All year around
- C All year around, not spring thaw and heavy rain
- D Only frozen roads

Road investment problem

 Which links should be upgraded to secure the flow of round wood while minimizing costs?

RoadOpt

Objective

• Minimize cost for road upgrading, transportation and harvest

Decisions

- Upgrading decisions for the road links
- Estimate the overall wood flow
- Harvest areas to cut

Constraints

- Limited supply
- Demand must be fulfilled
- Road link accessibility classes

Case study SCA

- 5 year planning horizon
- 19 demand points
 - Pulp/Paper-mills
 - Sawmills
 - Railway terminals
- Harvest 15.2 million m³
- Wood supply areas
 - Jämtland 600.000 ha
 - Medelpad 350.000 ha
 - Ångermanland 350.000 ha

Objective of case study

Investigate the potential savings of planning road upgrading, harvest and transport together

Scenarios

- Manual planning using manual harvest plan from SCA
- Coordinated planning harvest plan decided by the model

Accessible volumes

- Road upgrading 33 million EUR
 - From class C to B 3 023 km
 - From class D to B 372 km
 - From class D to C 908 km

Results

Scenario	Road upgrading	Transportation	Total
Manual planning (million EUR)	33.0	166.4	199.4
Coordinated planning (million EUR)	13.3	162.0	175.3
Savings (million EUR)	-19.7	-4.4	-24.1
Diff cost (%)	-60%	-3%	-12%

Potential savings: 24.1 million EUR or 1.6 EUR/m³

Conclusions

- Important results for SCA:
 - "Big savings by planning harvest, road upgrading and transport together"
- Complex problem is to hard to solve manually
- A need of advanced DSS like RoadOpt
- Important with good input data
- Even greater potential when optimizing on total inventory – further research

Thanks for listening

Victor.Asmoarp@Skogforsk.se

