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Precision agriculture preceded precision forestry

* Precision agriculture was more a
concept based on observing,
measuring and responding to
inter and intra-field variability in
crops

* Precision forestry more akin to
smart agriculture — the use of
modern technology to get as
much real information as
possible to implement decisions
and monitor performance

* Fundamentally about shift from
prescription forestry to data
driven decisions
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Data driven decisions: desiderata

Data msssssm) Decision

Reproducible
Transparent
Robust
Reflexive
Actionable
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Models can play an important link

Model Decision
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Knowledge capture
(Transfer)

Experimentation
(Observe)

Priorities

o

Demonstration




Practical knowledge
Technical knowledge Experience
Models Business constraints

Values
Ethics
Culture
Peers and family

Recommendations Risk preference
Guidelines Rules

l
i
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Decisions about buying toasters

Practical knowledge
Technical knowledge Experience Values
Models Business constraints Ethics
Recommendations Risk preference Peers an family
Guidelines Rules
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Decisions about who to marry

Practical knowledge
Technical knowledge Experience
Models Business constraints
Recommendations Risk preference
Guidelines Rules
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Values
Ethics
Culture
Peers and family




We are all being asked to make decisions about
an uncertain climate future: a case study

Global temperature change (1850-2016)

Jan




Forest adaptation is complex (c.f. agriculture at
least). Decisions need support

* Trees are long-lived, intervention points are few
e Our understanding is poor and the system complex

* In additional to incremental change, system has thresholds that
result in step changes

» Adaptation must take place across the value chain
* Landscape level connections
* We are adapting while climate change is ‘being done to us’




The world is full of unigue observations, making sense of
these requires integration and synthesis — especially for
drought and climate extremes our data is very sparse

(A) observed data

(==) the volume curve that CABALA
predicts from the weather that occurred
during the rotation

(==) are possible growth trajectories that
might have occurred planting each year
from 1940 to the 1998

Standing volumetihm)
Rainfall (mr

(==) long term average production

(==) is mean annual rainfall for the period
1940 to 2006

Age (years) (®) rainfall during observed rotation




Widespread Tree Mortality

“New Mexico

AuStralia

( from Allen et al. 2010 )

I Forest
B Gither wooded land
0 Other land

i
Argéﬁ_tina

Namibia

C.D. Allen et al. (2010) Forest Ecology and Management



Modelling can help: and example with drought
mortality and climate change

* Reproducible: we can keep workflows and show how decisions
were reached

* Transparent: assumptions are explicit, and can be built upon,
decisions are based on a risk assessments that can be presented

* Robust: we can define the limits to adaptation

 Reflexive: we can learn from new experience, we can design
investigative studies, to reduce gap between possible and
plausible.

* Actionable: we can assess and quantify management actions, at
the scale (local) that actions are implemented

* Participatory: we can design interactive what-if discussions, and
create a meeting point for technical and practical knowledge
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Papers that ignore mortality or key processes such as eCO2
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Misleading too!

Add in drought mortality

i
v

Relative to 1980 growth
% change

Relative to 1980 growth

% change

P e g

-0 [J-e-0

[ J1-10 C11-10
L, > 10

>0

Battaglia et al 2009

16 | Presentation title | Presenter name



Or look for broad surrogates or correlates for tree mortality
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Mortality proportion = f{altitude, slope, age, thinning status),
assuming a stationary climate
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Resilience: derive
relevant ecophysiological
thresholds and associated
recovery times

Resilience x exposure:
likelihood of reaching
threshold

Exposure: water
deficit history
(likelihoods)
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So what are we to do....

.................... Can we progress with the limited
experience and knowledge we have?

..................................... Can Models help us?

........................................ An Australian example —
evidence to decision making.
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So what is the evidence

 Not all trees die: it is
individuals that die not forests

 Small local differences in
conditions matter

* What we do, and the stand state at the
time of drought matters
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Evidence: we know a lot about plants and how
they interact with water stress intensity
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Critical thresholds for function

Y., > TLP — normal operating range, all going well

e > > Kp=0 — water stressed range: in this range transpiration impeded

and plant drawing on carbohydrate stores, we see stomata open for very short periods
Y.< Kp=0 — Critical water stress (hydraulic failure) — plants have lost ability to conduct

water and hydraulic failure likely
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Evidence: we know plants respond to duration
differently, leading to different causes of death

Table 1 Species leaf water potential at turgor loss point and the number of
days after drought (DOD) at which pre-dawn leaf water potential reached
the tugor loss point.

Species Turgor loss point (MPa) Day of drought to TLP % depletion TNC
E. globulus -2.2 34 +11%
E. smithii -2.0 50-60 -14%

P. radiata -1.6 75-85 -49%




100 (a)

Photosynthesis

Mechanistic representations/
conceptualisations consequently
are complex, and rarely useful in
prediction.

r state

Death is a syndrome not a single
cause and event connection ..

.....like health, and like why
your rugby team wins or looses,
although if your playing NZ it is
predictable — perhaps unlike
drought death!

—~€«—— Relative rate o

Duration of drought

McDowell et al. Trends in Ecology and
Evolution October 2011, Vol. 26, No. 10




Where too then?

* We want to be data driven and respect this evidence
* We want to be predictive in complex situations

* We want a framework that leads to action and not just
scaremongering

 Adams (2013) following Hawkes (2000) argue for process-based
representation of drought to overcome problems. Polari (2014)
argues further for statistical-dynamical modelling
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Consistent with our evidence Allen(2010) said
forest drought mortality was a function of
duration and intensity of drought
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Site
conditions,

Forest Predicted
growth stand growth

nERERE E
5 model stress

and weather

We use a growth model to integrate
factors to get a tree water stress —
adjusted for local conditions and
stand and tree state
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Respecting the evidence of physiological
thresholds we create a stress dose that looks
at duration and intensity in a species specific

way
Plethal . .
etha Daily dose (damage) is relate to degree
0.06 of stress below turgor loss point
0.05
Pt — D1
D=Zmax{ eaf,O}
T, 004 Pt — Plethal
qE
g 0.03
e When water stress released recovery
0.02
0.01 ZD=O, if QOIeaf > QT
0o &)%(\
0.00 -—’u °
-4 3

Leaf water potential (MPa)
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But the evidence tells us there is a (normal)
distribution of trees that die at different stress
levels (S)

rought Duration
Short 1 Long
: 5
S Mortality MORTALITY | £
4
z = :
g LI e
0
o
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> s ow
.4: aQ [ =
o Q 03
= g 0E
c ()
> F ~—
Drought ‘dose’ “ [
Tree genetics .
Environment § NO MORTALITY .
History o S
Weather Wetter S Drie
Precipitation
Threshold for
individuals

S = S[1 — N{SD, D=, 0%}]
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A. Plot 27
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Add in drought mortality

LR
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Relative to 1980 growth
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Battaglia et al 2009
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With Mortality -7.3%

36 | Presentation title | Presenter name



Number of rotations out of 20 where there is a moderate
or severe risk of drought death (>class 2) on 5m deep soils

White et al 2011 Climate driven mortality in forest plantations — prediction and effective adaptation
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Conclusions

* We have framed precision forestry as data driven decision making

* In some areas in which we want to make decisions our data is
sparse, and uncertainty is high

* We can ‘amplify’ the power of our data, and overcome the tyranny
of the unique observation, by fitting them into a conceptual
framework and modelling

* We should respect the science — modelling is a creative exercise,
modelling ignoring the facts is a delusional exercise

* To support adaptation we need to move from the science to
identification of hazard to the presentation of loss in appropriate
(actionable) manner

* Information (modelling) needs to be decision-centric and locally
relevant
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