Implementation of a computer vision algorithm for automated detection and diameter estimation of logs on trucks

> Mauricio Acuna AFORA, USC, Australia

Amanda Sosa School of Biosystems and Food Eng., UCD, Ireland

Outline

- Problem Manual and automated measurement of logs
- 2. Objectives of the study
- 3. Methodology samples, computer vision algorithm, and tool (LogVision)
- 4. Results from research trial (Forestal Mininco, Chile)
- 5. Future research
- 6. Summary

Problem

Manual measurement of timber

- It is time consuming and labour expensive
- Manually measuring logs is inaccurate and prone to high errors
- Not consistent among people (scalers)
- Often not transparent to buyers

Automated measurement of timber: Commercial apps

Source: Sarzynski et al. 2016

"Using the app is easy: a person takes a photo of the pile and instantly obtains the number of logs, their volumes and the **exact** diameters of each log"

Problem

Automated measurement of timber

- Few scientific references presenting errors and limitations of commercial vision systems in different conditions (e.g. species, log size, luminosity, pulp vs sawlogs, etc.)
- Volume calculations based on log diameter, but which diameter (SED or LED)?
- Logs of variable length
- Volume of sawlogs are measured using the SED (e.g. JAS rule)

Objectives

- Apply and implement a computer vision algorithm to detect logs and estimate their diameters
- Quantify errors between actual and estimated diameters
- Investigate patterns in the errors
- Develop regression model between actual and estimated diameters
- Test the algorithm/tool in operational conditions

Radiata pine sawlogs in Chile

Diam. range	Frequency	1				2								
28	5	28.6	28.6	28				28.6	28.0					
30	6	30.3	30.8	30.1				30.2	30.1	30.1				
32	3	32.1						32.6	32.3					
34	11	34.7	34.7	34.5	34.2	34	34.2	34.8	34.6	34.2	34.2	34.2		
36	1							36.8						
38	1							38.6						
40	1							40.4						
42	1							42						
44														
TOTAL LOGS		13	*##Ia1W(#)6	SUV OLU			ST O 1012	16		RALIA	CHI		WIGET N	Viceloisia
40 42 44 TOTAL LOGS	1	-	2 Univer	sity of tr	ie Sunsi	nine Coa	SI, QUEI	40.4 42 16	D, AUST	RALIA		COS Pro	vider in	

11.	TOLID DE RECEPCION RECLIZOS MERRINILIS	
1 www.	a stated	
	FORESTAL MINING, D S. A. NºO FOLLO 453684-6 020 1.301.11/-6	
	kstina : 0654 - 0490-92140 brigen : 7513 - LANKHUE Istrae Isot: CLAH-00029M ks. 1001 : RA-000-0455756 Uminal : 0500	
	iransportista : ASTUDILLO LTDA. 76029390-3	
	Conductor : Juan Abel Noin Animir 12769481-8	
	Descargador - 9 Potente : HCFLG3 Acaptado : EC516 Gata no Formin : 00 Gi : 01	
	Id Lineo : 055827-8 Especie : UI - P. SADIATA Prof.Existencia: 05 - Industrial Prod.Venta : 05 - Industrial Iname Areptodes Larab Dra-JIS Trz Atrib. Vol-88	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Resument fatal Aceptados : 053 Vol.: 29,621 m3 lotal Recharados: 000 Vol.: 0,000 m3 lotal Romano : 000	
	TIEMPOS dd/mm/acaa hit mm ss. Reception: 14/03/2016 14.41:00	
	Recepción Formin Sentido Formina 5 15.213.312-1	
	Scentarion Cliente	

20 truckloads

- End faces from 220 logs carried on trucks.
- Each diameter was measured manually with a measuring tape.
- The background of the images was cropped to remove noise from the end face of the logs.
- A convolved algorithm was used for contrast enhancement of the image.
- Automated detection and diameter estimation.
- Algorithm implemented with OpenCV, and programmed with C++ and Qt

OpenCV: Open Source Computer Vision

A & + @ =

© University of the Sunshine Coast, QUEENSLAND, AUSTRALIA | CRICOS Provider Number: 01595D Rise, and shine.

Images from the back of trucks carrying logs a) original b) with cropped background and c) convolved

Log diameter measurement tool called LogVision developed by Acuna.

Open Image	14 23	Center 1: [227, 250] Diameter : 34.13 Center 2: [92, 167] Diameter : 26.65 Center 3: [549, 231] Diameter : 35.47 Center 4: [189, 167] Diameter : 37.00 Center 5: [292, 201] Diameter : 28.45
Measure to scale up	21	Center 6: [383, 211] Diameter : 32.68 Center 7: [328, 312] Diameter : 38.18
Length object in pixels 105.5 Length object in cm	2319 (27/242) 729 (Center 8: [415, 58] Diameter : 31.40 Center 9: [448, 146] Diameter : 41.34 Center 10: [134, 256] Diameter : 33.88 Center 11: [466, 225] Diameter : 26.94 Center 12: [425, 304] Diameter : 40.21
40 Factor 2.6375		Center 13: [569, 138] Diameter : 37.8. Center 14: [144, 88] Diameter : 33.85 Center 15: [571, 435] Diameter : 40.14 Center 16: [80, 441] Diameter : 36.63
Process image	20	Center 17: [138, 349] Diameter : 41.14 Center 18: [488, 423] Diameter : 21.98 Center 19: [165, 446] Diameter : 35.98 Center 20: [245, 347] Diameter : 44.64 Center 21: [346, 128] Diameter : 38.30
Parameter 1 1.980 🔹 Parameter 2 30.0 🖨	CONCENTES CALLS STORES	Center 22: [266, 454] Diameter : 34.44 Center 23: [243, 76] Diameter : 37.65
Parameter 3 100.0		Number of logs: 23
Parameter 4 100.0 🜩 Parameter 5 5.0 🜩 Parameter 6 61.0 🜩	Functions/algorithms: P1. 2D filtering with a 5x5 kernel.	LogVision 1.0 Developed by Dr. Mauricio Acuna
Save processed image	P2. Changing of colour channels.P3. A Gaussian Blur algorithm.P4. A Hough Circles algorithm.	
Export to Excel	P5. A function to draw circles around the faces of the logs.	

usc.edu.au

LogVision – Log detection & diameter estimates

LogVision 1.0

Rise, and shine.

Statistics - Manual and automated measurements

Description	Manual	Algorithm		
Count	220	220		
Mean	34.4	34.6		
Std. error	0.28	0.30		
Median	34.1	34.0		
Std. deviation	4.15	4.44		
Range	21.3	27.8		
Min	27.5	23.7		
Max	48.8	51.5		
CI (95%)	0.56	0.60		

Variation (cm) between the manual and digital measurements of the diameters

Variation (cm) between the manual and digital measurements of the diameters

67% variation within ±2 cm

Results

Regression model between manual and automated measurements of the diameters

Future research

- Use the algorithms/app to measure stacked piles
- Apply and test improved algorithms in different conditions (species, log size, luminosity, etc.)
- Test the accuracy of commercial applications
- Quantify the errors and their economic impact
- Provide volumetric estimates based on a combination of photogrammetric (3D reconstruction) and computing vision algorithms

Future research

Measuring stacked piles and logs on forwarders

		and a short of the second second second
C:\QT5.4-2\Tools\QtCreator\bin\qtcrea	Log location and radius	- 🗆 🗙
<pre>***** UIDEOINPUT LIBRARY - 0.1995 - TFW07 ****** center : [66, 118] radius : 14 center : [306, 190] radius : 17 center : [477, 154] radius : 15 center : [238, 210] radius : 20 center : [78, 138] radius : 21 center : [553, 110] radius : 17 center : [553, 74] radius : 21 center : [557, 186] radius : 22 center : [425, 94] radius : 18 </pre>		
<image/> <image/> <image/>	RALIA CRICOS Provider Number: 01595	and shine.

Summary

- A computer vision approach for detection and estimation of diameters of logs on trucks (LogVision) has been presented.
- Based on OpenCV algorithms and developed with the Qt/C++ framework.
- Preliminary results show the potential in real life operations. Mean differences were -0.13 cm.
- Further studies will compare different image capturing and pre-processing techniques, and also different measurement algorithms.

Implementation of a computer vision algorithm for automated detection and diameter estimation of logs on trucks

> Mauricio Acuna AFORA, USC, Australia

Amanda Sosa School of Biosystems and Food Eng., UCD, Ireland

