Cable logging operation supported with sensor fusion

Marek Pierzchała1 Knut Kvaal2 Bruce Talbot 1

1Norwegian Institute for Bioeconomy Research
Aas, Norway

2Faculty of mathematics and technology
Norwegian University of Life Sciences, Aas, Norway

Precision Forestry Symposium, Stellenbosch, 2017
Outline

Aims

Introduction

Methods
 System setup
 Data preparation
 Multivariate data analysis

Results
 Video
 Transfer rates
 PCA Biplot
 PLS results

Conclusions
Aims

Development and test a standalone communication platform for capturing and processing cable-yarding operations data

1. Integration of IMU, GPS and camera data to support automatic work phase recognition.

2. Quantification of the phase prediction success of the method.
Introduction

Finite state machine can be depicted as a graph, whose nodes represent possible system states, and whose arrows represent possible transitions from state to state.
Outline

Aims

Introduction

Methods

System setup
- Data preparation
- Multivariate data analysis

Results

- Video
- Transfer rates
- PCA Biplot
- PLS results

Conclusions
System setup

This setup was tested on self propelled Woodliner with Konrad KMS tower yarder. Whole tree harvesting was used with downhill extraction in a 160m long corridor.

1. Tower
2. TP Link access point
3. TP Link repeater
4. Computer 1 (slave)
5. Cable carriage
6. Camera 1
7. Camera 2
8. Computer 2 (master)
9. Android device (IMU,GPS)
10. Battery pack 1
11. Battery pack 2
Outline

Aims

Introduction

Methods
 System setup
 Data preparation
 Multivariate data analysis

Results
 Video
 Transfer rates
 PCA Biplot
 PLS results

Conclusions
Data preparation

1. IMU (orientation, angular velocity, linear acceleration)
2. GPS (elevation, velocity)
3. Camera (optical flow - motion vectors)
Outline

Aims

Introduction

Methods
 System setup
 Data preparation
 Multivariate data analysis

Results
 Video
 Transfer rates
 PCA Biplot
 PLS results

Conclusions
Multivariate data analysis

1. Variables recorded from different sensors were collected as rows in Matrix X
2. 6 phases were manually classified were collected in corresponding matrix Y
3. Responses in Y consisted of 6 categorical binary dummy variables

Table: Test verification responses (TP, FP, FN, TN) for PLS model classification of work phases where A is the true phase.

<table>
<thead>
<tr>
<th>Condition</th>
<th>A</th>
<th>Not A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test says "A"</td>
<td>True positive (TP)</td>
<td>False positive (FP)</td>
</tr>
<tr>
<td>Test says "Not A"</td>
<td>False negative (FN)</td>
<td>True negative (TN)</td>
</tr>
</tbody>
</table>
Outline

Aims

Introduction

Methods
 System setup
 Data preparation
 Multivariate data analysis

Results
 Video
 Transfer rates
 PCA Biplot
 PLS results

Conclusions
Video
Outline

Aims

Introduction

Methods
 System setup
 Data preparation
 Multivariate data analysis

Results
 Video
 Transfer rates
 PCA Biplot
 PLS results

Conclusions
Transfer rates

Table: Data packets size (kilobytes) and data transfer rates (kilobytes/s) test results for the different sensor devices used on the communication platform.

<table>
<thead>
<tr>
<th>Data source</th>
<th>size min (KB)</th>
<th>size max (KB)</th>
<th>frequency min (Hz)</th>
<th>rate min (KB/s)</th>
<th>rate max (KB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>0.12</td>
<td>0.12</td>
<td>0.96</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>IMU</td>
<td>0.32</td>
<td>0.32</td>
<td>0.01</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Camera 2 (RaspiCam) compressed image</td>
<td>57</td>
<td>112</td>
<td>0.04</td>
<td>1425</td>
<td>2800</td>
</tr>
<tr>
<td>Camera 1 (USB cam) compressed image</td>
<td>59</td>
<td>73</td>
<td>0.085</td>
<td>694.11</td>
<td>858.82</td>
</tr>
<tr>
<td>Total (including compressed images only)</td>
<td>116.44</td>
<td>185.44</td>
<td></td>
<td>2151.23</td>
<td>3690.94</td>
</tr>
<tr>
<td>Camera 1 (USB cam) raw image</td>
<td>942.08</td>
<td>942.08</td>
<td>0.1</td>
<td>9 420.8</td>
<td>9 420.8</td>
</tr>
<tr>
<td>Total (all data)</td>
<td>1 058.52</td>
<td>1 127.52</td>
<td></td>
<td>11 572.03</td>
<td>13 111.74</td>
</tr>
</tbody>
</table>
Outline

Aims

Introduction

Methods
 System setup
 Data preparation
 Multivariate data analysis

Results
 Video
 Transfer rates
 PCA Biplot
 PLS results

Conclusions
PCA Biplot

Biplot of validation data

- Variables
- GSPZ
- ROLL
- GPS_velocityXY
- Optical Flow
- ANGULAR VELOCITY
- ACCELERATION X
- ACCELERATION Y
- ACCELERATION Z
- lateral in
- inhaul
- outhaul
- stop
- unhook

NIBIO
Outline

Aims

Introduction

Methods
 System setup
 Data preparation
 Multivariate data analysis

Results
 Video
 Transfer rates
 PCA Biplot
 PLS results

Conclusions
PLS results

Table: Prediction results for classification success per work phase.

<table>
<thead>
<tr>
<th>Class</th>
<th>TP</th>
<th>FP</th>
<th>TN</th>
<th>FN</th>
<th>N</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>outhaul</td>
<td>0.767</td>
<td>0.018</td>
<td>0.981</td>
<td>0.232</td>
<td>56</td>
<td>0.843</td>
</tr>
<tr>
<td>choking</td>
<td>0.947</td>
<td>0.076</td>
<td>0.923</td>
<td>0.052</td>
<td>133</td>
<td>0.818</td>
</tr>
<tr>
<td>lateral in</td>
<td>0.795</td>
<td>0.041</td>
<td>0.958</td>
<td>0.204</td>
<td>88</td>
<td>0.804</td>
</tr>
<tr>
<td>inhaul</td>
<td>0.738</td>
<td>0.038</td>
<td>0.961</td>
<td>0.261</td>
<td>111</td>
<td>0.845</td>
</tr>
<tr>
<td>unhook</td>
<td>0.721</td>
<td>0.066</td>
<td>0.933</td>
<td>0.278</td>
<td>61</td>
<td>0.602</td>
</tr>
<tr>
<td>stop</td>
<td>0.450</td>
<td>0.033</td>
<td>0.966</td>
<td>0.549</td>
<td>51</td>
<td>0.605</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicted</th>
<th>outhaul</th>
<th>choking</th>
<th>lateral in</th>
<th>inhaul</th>
<th>unhook</th>
<th>stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>outhaul</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>choking</td>
<td>12</td>
<td>126</td>
<td>15</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lateral in</td>
<td>0</td>
<td>6</td>
<td>70</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>inhaul</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>82</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>unhook</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>44</td>
<td>19</td>
</tr>
<tr>
<td>stop</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>23</td>
</tr>
</tbody>
</table>
Conclusions

1. Study showed promising method for enabling machine communication with max latency of 0.16s.
2. WLAN has a potential for cable yarding with defined spatial range.
3. Data fusion from different sensors resulted in 78 % of correct classification.
4. Further implementation of this concept is considered a starting point for further development of autonomous routines in cable yarding.